Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 5 |
Descriptor
Source
Journal of Educational and… | 5 |
Author
Bartolucci, Francesco | 1 |
Hong, Guanglei | 1 |
Jin, Hui | 1 |
Keller, Bryan | 1 |
Pennoni, Fulvia | 1 |
Raudenbush, Stephen W. | 1 |
Rubin, Donald B. | 1 |
Vittadini, Giorgio | 1 |
Youmi Suk | 1 |
Publication Type
Journal Articles | 5 |
Reports - Research | 5 |
Education Level
Elementary Education | 2 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
What Works Clearinghouse Rating
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Keller, Bryan – Journal of Educational and Behavioral Statistics, 2020
Widespread availability of rich educational databases facilitates the use of conditioning strategies to estimate causal effects with nonexperimental data. With dozens, hundreds, or more potential predictors, variable selection can be useful for practical reasons related to communicating results and for statistical reasons related to improving the…
Descriptors: Nonparametric Statistics, Computation, Testing, Causal Models
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Jin, Hui; Rubin, Donald B. – Journal of Educational and Behavioral Statistics, 2009
An approach to handle partial compliance behavior using principal stratification is presented and applied to a subset of the longitudinal data from the New York City School Choice Scholarship Program, a randomized experiment designed to assess the effects of private schools versus public schools on academic achievement. The initial analysis…
Descriptors: Statistical Inference, Causal Models, Longitudinal Studies, Public Schools
Hong, Guanglei; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2008
The authors propose a strategy for studying the effects of time-varying instructional treatments on repeatedly observed student achievement. This approach responds to three challenges: (a) The yearly reallocation of students to classrooms and teachers creates a complex structure of dependence among responses; (b) a child's learning outcome under a…
Descriptors: Elementary School Mathematics, Grade 4, Probability, Teaching Methods