NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ann A. O'Connell; Nivedita Bhaktha; Jing Zhang – Society for Research on Educational Effectiveness, 2021
Background: Counts are familiar outcomes in education research settings, including those involving tests of interventions. Clustered data commonly occur in education research studies, given that data are often collected from students within classrooms or schools. There is a wide array of distributions and models that can be used for clustered…
Descriptors: Hierarchical Linear Modeling, Educational Research, Statistical Distributions, Multivariate Analysis
Wang, Chun; Nydick, Steven W. – Journal of Educational and Behavioral Statistics, 2020
Recent work on measuring growth with categorical outcome variables has combined the item response theory (IRT) measurement model with the latent growth curve model and extended the assessment of growth to multidimensional IRT models and higher order IRT models. However, there is a lack of synthetic studies that clearly evaluate the strength and…
Descriptors: Item Response Theory, Longitudinal Studies, Comparative Analysis, Models
Wang, Chun; Nydick, Steven W. – Grantee Submission, 2019
Recent work on measuring growth with categorical outcome variables has combined the item response theory (IRT) measurement model with the latent growth curve (LGC) model (e.g., McArdle, 1988) and extended the assessment of growth to multidimensional IRT models (e.g., Hsieh, von Eye, & Maier, 2010; Huang, 2013) and higher-order IRT models…
Descriptors: Longitudinal Studies, Item Response Theory, Comparative Analysis, Models
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Rose, Kevin Paul – ProQuest LLC, 2013
In 2000, the Texas Higher Education Coordinating Board (THECB) adopted Closing the Gaps by 2015: The Texas Higher Education Plan. This new master plan set goals for Texas higher education in participation, success, research, and excellence. The plan acknowledged a shortfall related to projected demographic shifts in both the number of degrees and…
Descriptors: Longitudinal Studies, Community Colleges, Educational Finance, Achievement Gap
Peer reviewed Peer reviewed
Direct linkDirect link
McArdle, John J.; Paskus, Thomas S.; Boker, Steven M. – Multivariate Behavioral Research, 2013
This is an application of contemporary multilevel regression modeling to the prediction of academic performances of 1st-year college students. At a first level of analysis, the data come from N greater than 16,000 students who were college freshman in 1994-1995 and who were also participants in high-level college athletics. At a second level of…
Descriptors: Multivariate Analysis, Multiple Regression Analysis, Hierarchical Linear Modeling, College Athletics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pfenninger, Simone E. – Studies in Second Language Learning and Teaching, 2015
The longitudinal intervention study reported here is the first to investigate the efficiency of computer learning software specifically designed for dyslexic Swiss German learners of Standard German as a second language (L2) and English as a third language (L3). A total of 40 subjects (20 of them dyslexics and 20 of them nondyslexics; 10 students…
Descriptors: Longitudinal Studies, Program Effectiveness, Computer Software, Dyslexia
Millsap, Roger E. – 1986
A component analytic method for analyzing multivariate longitudinal data is presented that does not make strong assumptions about the structure of the data. Central to the method are the facts that components are derived as linear composites of the observed or manifest variables and that the components must provide an adequate representation of…
Descriptors: Comparative Analysis, Computer Software, Cross Sectional Studies, Error of Measurement