Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 1 |
Descriptor
Markov Processes | 4 |
Monte Carlo Methods | 4 |
Item Response Theory | 3 |
Models | 3 |
Bayesian Statistics | 2 |
Attitude Measures | 1 |
Computation | 1 |
Data Analysis | 1 |
Educational Research | 1 |
Elementary School Teachers | 1 |
Generalization | 1 |
More ▼ |
Source
Journal of Educational and… | 4 |
Author
Junker, Brian W. | 4 |
Patz, Richard J. | 2 |
Johnson, Matthew S. | 1 |
Sweet, Tracy M. | 1 |
Thomas, Andrew C. | 1 |
Publication Type
Journal Articles | 4 |
Reports - Research | 2 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sweet, Tracy M.; Thomas, Andrew C.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 2013
Intervention studies in school systems are sometimes aimed not at changing curriculum or classroom technique, but rather at changing the way that teachers, teaching coaches, and administrators in schools work with one another--in short, changing the professional social networks of educators. Current methods of social network analysis are…
Descriptors: Educational Research, Models, Social Networks, Network Analysis

Patz, Richard J.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 1999
Demonstrates Markov chain Monte Carlo (MCMC) techniques that are well-suited to complex models with Item Response Theory (IRT) assumptions. Develops an MCMC methodology that can be routinely implemented to fit normal IRT models, and compares the approach to approaches based on Gibbs sampling. Contains 64 references. (SLD)
Descriptors: Item Response Theory, Markov Processes, Models, Monte Carlo Methods

Patz, Richard J.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 1999
Extends the basic Markov chain Monte Carlo (MCMC) strategy of R. Patz and B. Junker (1999) for Bayesian inference in complex Item Response Theory settings to address issues such as nonresponse, designed missingness, multiple raters, guessing behaviors, and partial credit (polytomous) test items. Applies the MCMC method to data from the National…
Descriptors: Bayesian Statistics, Item Response Theory, Markov Processes, Monte Carlo Methods
Using Data Augmentation and Markov Chain Monte Carlo for the Estimation of Unfolding Response Models
Johnson, Matthew S.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 2003
Unfolding response models, a class of item response theory (IRT) models that assume a unimodal item response function (IRF), are often used for the measurement of attitudes. Verhelst and Verstralen (1993)and Andrich and Luo (1993) independently developed unfolding response models by relating the observed responses to a more common monotone IRT…
Descriptors: Markov Processes, Item Response Theory, Computation, Data Analysis