NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Guojing; Wang, Jianxun; Lynch, Collin F.; Chi, Min – International Educational Data Mining Society, 2017
In this study, we applied decision trees (DT) to extract a compact set of pedagogical decision-making rules from an original "full" set of 3,702 Reinforcement Learning (RL)- induced rules, referred to as the DT-RL rules and Full-RL rules respectively. We then evaluated the effectiveness of the two rule sets against a baseline Random…
Descriptors: Learning Theories, Teaching Methods, Decision Making, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Murphy, Daniel L.; Beretvas, S. Natasha – Applied Measurement in Education, 2015
This study examines the use of cross-classified random effects models (CCrem) and cross-classified multiple membership random effects models (CCMMrem) to model rater bias and estimate teacher effectiveness. Effect estimates are compared using CTT versus item response theory (IRT) scaling methods and three models (i.e., conventional multilevel…
Descriptors: Teacher Effectiveness, Comparative Analysis, Hierarchical Linear Modeling, Test Theory
Stamper, John; Barnes, Tiffany – International Working Group on Educational Data Mining, 2009
We seek to simplify the creation of intelligent tutors by using student data acquired from standard computer aided instruction (CAI) in conjunction with educational data mining methods to automatically generate adaptive hints. In our previous work, we have automatically generated hints for logic tutoring by constructing a Markov Decision Process…
Descriptors: Data Analysis, Computer Assisted Instruction, Intelligent Tutoring Systems, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Fox, J.-P.; Wyrick, Cheryl – Journal of Educational and Behavioral Statistics, 2008
The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…
Descriptors: Item Response Theory, Models, Markov Processes, Monte Carlo Methods