NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Christhilf, Katerina; Newton, Natalie; Butterfuss, Reese; McCarthy, Kathryn S.; Allen, Laura K.; Magliano, Joseph P.; McNamara, Danielle S. – International Educational Data Mining Society, 2022
Prompting students to generate constructed responses as they read provides a window into the processes and strategies that they use to make sense of complex text. In this study, Markov models examined the extent to which: (1) patterns of strategies; and (2) strategy combinations could be used to inform computational models of students' text…
Descriptors: Markov Processes, Reading Strategies, Reading Comprehension, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Xiaoqing; Wu, Haotian; Feng, Xiangnan; Song, Xinyuan – Sociological Methods & Research, 2021
Given the questionnaire design and the nature of the problem, partially ordered data that are neither completely ordered nor completely unordered are frequently encountered in social, behavioral, and medical studies. However, early developments in partially ordered data analysis are very limited and restricted only to cross-sectional data. In this…
Descriptors: Bayesian Statistics, Health Behavior, Smoking, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Anika; Garg, Deepak; Kumar, Parteek – IEEE Transactions on Learning Technologies, 2022
With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the…
Descriptors: Markov Processes, Online Courses, Learning Management Systems, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gardner, Josh; Brooks, Christopher; Li, Warren – Journal of Learning Analytics, 2018
In this paper, we evaluate the complete undergraduate co-enrollment network over a decade of education at a large American public university. We provide descriptive and exploratory analyses of the network, demonstrating that the co-enrollment networks evaluated follow power-law degree distributions similar to many other large-scale networks; that…
Descriptors: Markov Processes, Classification, Undergraduate Students, Grade Point Average
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Zhang, Susu; Douglas, Jeff; Culpepper, Steven – Measurement: Interdisciplinary Research and Perspectives, 2018
Analyzing students' growth remains an important topic in educational research. Most recently, Diagnostic Classification Models (DCMs) have been used to track skill acquisition in a longitudinal fashion, with the purpose to provide an estimate of students' learning trajectories in terms of the change of fine-grained skills overtime. Response time…
Descriptors: Reaction Time, Markov Processes, Computer Assisted Instruction, Spatial Ability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Villanueva Manjarres, Andrés; Moreno Sandoval, Luis Gabriel; Salinas Suárez, Martha Janneth – Digital Education Review, 2018
Educational Data Mining is an emerging discipline which seeks to develop methods to explore large amounts of data from educational settings, in order to understand students' behavior, interests and results in a better way. In recent years there have been various works related to this specialty and multiple data mining techniques derived from this…
Descriptors: Information Retrieval, Data Analysis, Educational Environment, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Michalenko, Joshua J.; Lan, Andrew S.; Waters, Andrew E.; Grimaldi, Philip J.; Baraniuk, Richard G. – International Educational Data Mining Society, 2017
An important, yet largely unstudied problem in student data analysis is to detect "misconceptions" from students' responses to "open-response" questions. Misconception detection enables instructors to deliver more targeted feedback on the misconceptions exhibited by many students in their class, thus improving the quality of…
Descriptors: Data Analysis, Misconceptions, Student Attitudes, Feedback (Response)
Feng, Yuling – ProQuest LLC, 2013
Diagnostic classification models (DCMs) are structured latent class models widely discussed in the field of psychometrics. They model subjects' underlying attribute patterns and classify subjects into unobservable groups based on their mastery of attributes required to answer the items correctly. The effective implementation of DCMs depends…
Descriptors: Classification, Models, Psychometrics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kunina-Habenicht, Olga; Rupp, Andre A.; Wilhelm, Oliver – Journal of Educational Measurement, 2012
Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item-fit statistics for correct and misspecified diagnostic classification models within a log-linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3…
Descriptors: Classification, Accuracy, Goodness of Fit, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mossman, Douglas; Wygant, Dustin B.; Gervais, Roger O. – Psychological Assessment, 2012
Psychologists frequently use symptom validity tests (SVTs) to help determine whether evaluees' test performance or reported symptoms accurately represent their true functioning and capability. Most studies evaluating the accuracy of SVTs have used either known-group comparisons or simulation designs, but these approaches have well-known…
Descriptors: Accuracy, Classification, Validity, Psychological Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Martin, Jay B.; Griffiths, Thomas L.; Sanborn, Adam N. – Cognitive Science, 2012
Exploring how people represent natural categories is a key step toward developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as…
Descriptors: Markov Processes, Monte Carlo Methods, Correlation, Efficiency
Cousino, Andrew – ProQuest LLC, 2013
The goal of this work is to provide instructors with detailed information about their classes at each assignment during the term. The information is both on an individual level and at the aggregate level. We used the large number of grades, which are available online these days, along with data-mining techniques to build our models. This enabled…
Descriptors: Mathematics Instruction, Algebra, Probability, Mathematical Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – Journal of Educational Data Mining, 2015
Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language…
Descriptors: Classification, Dialogs (Language), Computational Linguistics, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Jiao, Hong; Kamata, Akihito; Wang, Shudong; Jin, Ying – Journal of Educational Measurement, 2012
The applications of item response theory (IRT) models assume local item independence and that examinees are independent of each other. When a representative sample for psychometric analysis is selected using a cluster sampling method in a testlet-based assessment, both local item dependence and local person dependence are likely to be induced.…
Descriptors: Item Response Theory, Test Items, Markov Processes, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1  |  2