Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 11 |
Descriptor
Bayesian Statistics | 11 |
Learning Processes | 11 |
Markov Processes | 11 |
Models | 6 |
Monte Carlo Methods | 5 |
Probability | 4 |
Accuracy | 3 |
Computation | 3 |
Intelligent Tutoring Systems | 3 |
Academic Achievement | 2 |
Computer Software | 2 |
More ▼ |
Source
ETS Research Report Series | 2 |
International Educational… | 2 |
Journal of Educational Data… | 2 |
Cognitive Science | 1 |
Decision Sciences Journal of… | 1 |
Educational and Psychological… | 1 |
ProQuest LLC | 1 |
Psychological Review | 1 |
Author
Almond, Russell G. | 1 |
Berenson, Mark | 1 |
Blei, David M. | 1 |
Feng, Junchen | 1 |
Gershman, Samuel J. | 1 |
Gervet, Theophile | 1 |
Griffiths, Thomas L. | 1 |
Hartz, Sarah | 1 |
Johnson, Marina E. | 1 |
Kalish, Michael L. | 1 |
Kizilcec, René F. | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 8 |
Speeches/Meeting Papers | 2 |
Dissertations/Theses -… | 1 |
Guides - Classroom - Teacher | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lozano, José H.; Revuelta, Javier – Educational and Psychological Measurement, 2023
The present paper introduces a general multidimensional model to measure individual differences in learning within a single administration of a test. Learning is assumed to result from practicing the operations involved in solving the items. The model accounts for the possibility that the ability to learn may manifest differently for correct and…
Descriptors: Bayesian Statistics, Learning Processes, Test Items, Item Analysis
Williamson, Kimberly; Kizilcec, René F. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms such as Bayesian Knowledge Tracing (BKT) can provide students and teachers with helpful information about their progress towards learning objectives. Despite the popularity of BKT in the research community, the algorithm is not widely adopted in educational practice. This may be due to skepticism from users and…
Descriptors: Bayesian Statistics, Learning Processes, Computer Software, Learning Analytics
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Feng, Junchen – ProQuest LLC, 2017
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Bayesian Statistics, Models
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Descriptors: Factor Analysis, Regression (Statistics), Knowledge Level, Markov Processes
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Gershman, Samuel J.; Blei, David M.; Niv, Yael – Psychological Review, 2010
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…
Descriptors: Conditioning, Statistical Inference, Inferences, Bayesian Statistics
Griffiths, Thomas L.; Kalish, Michael L. – Cognitive Science, 2007
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…
Descriptors: Probability, Diachronic Linguistics, Statistical Inference, Language Universals
Almond, Russell G. – ETS Research Report Series, 2007
Over the course of instruction, instructors generally collect a great deal of information about each student. Integrating that information intelligently requires models for how a student's proficiency changes over time. Armed with such models, instructors can "filter" the data--more accurately estimate the student's current proficiency…
Descriptors: Markov Processes, Decision Making, Student Evaluation, Learning Processes
Hartz, Sarah; Roussos, Louis – ETS Research Report Series, 2008
This paper presents the development of the fusion model skills diagnosis system (fusion model system), which can help integrate standardized testing into the learning process with both skills-level examinee parameters for modeling examinee skill mastery and skills-level item parameters, giving information about the diagnostic power of the test.…
Descriptors: Skill Development, Educational Diagnosis, Theory Practice Relationship, Standardized Tests