Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 27 |
Since 2006 (last 20 years) | 71 |
Descriptor
Markov Processes | 88 |
Probability | 88 |
Models | 40 |
Bayesian Statistics | 32 |
Monte Carlo Methods | 26 |
Statistical Analysis | 22 |
Computation | 16 |
Foreign Countries | 13 |
Mathematical Models | 12 |
Simulation | 12 |
Item Response Theory | 11 |
More ▼ |
Source
Author
Mislevy, Robert J. | 3 |
Brunskill, Emma | 2 |
Budgett, Stephanie | 2 |
Doroudi, Shayan | 2 |
Griffiths, Thomas L. | 2 |
Johnson, Matthew S. | 2 |
Kaplan, David | 2 |
Levy, Roy | 2 |
Pfannkuch, Maxine | 2 |
Rijmen, Frank | 2 |
Yan, Duanli | 2 |
More ▼ |
Publication Type
Journal Articles | 68 |
Reports - Research | 50 |
Reports - Descriptive | 17 |
Reports - Evaluative | 16 |
Speeches/Meeting Papers | 9 |
Dissertations/Theses -… | 4 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Audience
Researchers | 2 |
Teachers | 2 |
Practitioners | 1 |
Students | 1 |
Location
Australia | 4 |
Italy | 2 |
China | 1 |
Czech Republic | 1 |
Denmark | 1 |
Germany | 1 |
Maryland (College Park) | 1 |
Netherlands | 1 |
Pennsylvania | 1 |
Pennsylvania (Pittsburgh) | 1 |
Taiwan | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
British Household Panel Survey | 1 |
What Works Clearinghouse Rating
Sim, Min Kyu; Choi, Dong Gu – Research Quarterly for Exercise and Sport, 2020
Purpose: This study builds a stochastic model of a discrete-time Markov chain (DTMC) that fits well with a dataset of professional playing records. Methods: The point-by-point dataset of Men's single matches played in the Association of Tennis Professionals (ATP) tour from 2011 to 2015 is analyzed. A long-debated assumption on the…
Descriptors: Probability, Racquet Sports, Scores, Scoring
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Swistock Pollard, Blake Stephen – ProQuest LLC, 2017
We begin by defining the concept of "open" Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain "boundary" states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow…
Descriptors: Markov Processes, Probability, Scientific Concepts
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Batley, Prathiba Natesan; Minka, Tom; Hedges, Larry Vernon – Grantee Submission, 2020
Immediacy is one of the necessary criteria to show strong evidence of treatment effect in single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no inferential statistical tool has been used to demonstrate or quantify it until now. We investigate and quantify immediacy by treating the change-points between the…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Statistical Inference, Markov Processes
Polyzou, Agoritsa; Nikolakopoulos, Athanasios N.; Karypis, George – International Educational Data Mining Society, 2019
Course selection is a crucial and challenging problem that students have to face while navigating through an undergraduate degree program. The decisions they make shape their future in ways that they cannot conceive in advance. Available departmental sample degree plans are not personalized for each student, and personal discussion time with an…
Descriptors: Markov Processes, Course Selection (Students), Undergraduate Students, Decision Making
Ramesh, Arti; Goldwasser, Dan; Huang, Bert; Daume, Hal; Getoor, Lise – IEEE Transactions on Learning Technologies, 2020
Maintaining and cultivating student engagement is critical for learning. Understanding factors affecting student engagement can help in designing better courses and improving student retention. The large number of participants in massive open online courses (MOOCs) and data collected from their interactions on the MOOC open up avenues for studying…
Descriptors: Online Courses, Learner Engagement, Student Behavior, Success
Hansen, Christian; Hansen, Casper; Hjuler, Niklas; Alstrup, Stephen; Lioma, Christina – International Educational Data Mining Society, 2017
The analysis of log data generated by online educational systems is an important task for improving the systems, and furthering our knowledge of how students learn. This paper uses previously unseen log data from Edulab, the largest provider of digital learning for mathematics in Denmark, to analyse the sessions of its users, where 1.08 million…
Descriptors: Foreign Countries, Markov Processes, Mathematical Models, Student Behavior
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Pfannkuch, Maxine; Budgett, Stephanie – Journal of Statistics Education, 2016
Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…
Descriptors: Markov Processes, Introductory Courses, Mathematics Instruction, Probability
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks