Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 8 |
Descriptor
Source
Educational and Psychological… | 2 |
Applied Psychological… | 1 |
Grantee Submission | 1 |
Journal of Educational… | 1 |
Journal of Educational and… | 1 |
ProQuest LLC | 1 |
Structural Equation Modeling:… | 1 |
Author
Aki Vehtari | 1 |
Andrew Gelman | 1 |
Babcock, Ben | 1 |
Bob Carpenter | 1 |
Bolin, Jocelyn H. | 1 |
Daniel Simpson | 1 |
Depaoli, Sarah | 1 |
Finch, W. Holmes | 1 |
Hodge, Kari J. | 1 |
Hong, Yuan | 1 |
Lamsal, Sunil | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Journal Articles | 6 |
Dissertations/Theses -… | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rank-Normalization, Folding, and Localization: An Improved [R-Hat] for Assessing Convergence of MCMC
Aki Vehtari; Andrew Gelman; Daniel Simpson; Bob Carpenter; Paul-Christian Burkner – Grantee Submission, 2021
Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic [R-hat] of Gelman and Rubin (1992) has serious flaws. Traditional [R-hat] will fail to correctly diagnose convergence failures…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Efficiency
Babcock, Ben; Hodge, Kari J. – Educational and Psychological Measurement, 2020
Equating and scaling in the context of small sample exams, such as credentialing exams for highly specialized professions, has received increased attention in recent research. Investigators have proposed a variety of both classical and Rasch-based approaches to the problem. This study attempts to extend past research by (1) directly comparing…
Descriptors: Item Response Theory, Equated Scores, Scaling, Sample Size
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Lamsal, Sunil – ProQuest LLC, 2015
Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…
Descriptors: Item Response Theory, Monte Carlo Methods, Maximum Likelihood Statistics, Markov Processes
Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Descriptors: Markov Processes, Factor Analysis, Statistical Bias, Evaluation Research
de la Torre, Jimmy; Hong, Yuan – Applied Psychological Measurement, 2010
Sample size ranks as one of the most important factors that affect the item calibration task. However, due to practical concerns (e.g., item exposure) items are typically calibrated with much smaller samples than what is desired. To address the need for a more flexible framework that can be used in small sample item calibration, this article…
Descriptors: Sample Size, Markov Processes, Tests, Data Analysis