NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…23
Audience
Location
China1
Tennessee1
Laws, Policies, & Programs
Assessments and Surveys
Measures of Academic Progress1
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2023
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can…
Descriptors: Equal Education, Mathematics Education, Word Problems (Mathematics), Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Agarwal, Deepak; Baker, Ryan S.; Muraleedharan, Anupama – International Educational Data Mining Society, 2020
There has been considerable interest in techniques for modelling student learning across practice problems to drive real-time adaptive learning, with particular focus on variants of the classic Bayesian Knowledge Tracing (BKT) model proposed by Corbett & Anderson, 1995. Over time researches have proposed many variants of BKT with…
Descriptors: Intelligent Tutoring Systems, Models, Skill Development, Mastery Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ethan Prihar; Manaal Syed; Korinn Ostrow; Stacy Shaw; Adam Sales; Neil Heffernan – International Educational Data Mining Society, 2022
As online learning platforms become more ubiquitous throughout various curricula, there is a growing need to evaluate the effectiveness of these platforms and the different methods used to structure online education and tutoring. Towards this endeavor, some platforms have performed randomized controlled experiments to compare different user…
Descriptors: Educational Trends, Electronic Learning, Educational Experience, Educational Experiments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matayoshi, Jeffrey; Cosyn, Eric; Uzun, Hasan – International Educational Data Mining Society, 2022
As outlined by Benjamin Bloom, students working within a mastery learning framework must demonstrate mastery of the core prerequisite material before learning any subsequent material. Since many learning systems in use today adhere to these principles, an important component of such systems is the set of rules or algorithms that determine when a…
Descriptors: Guidelines, Mastery Learning, Learning Processes, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Pane, John F. – International Educational Data Mining Society, 2020
The design of the Cognitive Tutor Algebra I (CTA1) intelligent tutoring system assumes that students work through sections of material following a pre-specified order, and only move on from one section to the next after mastering the first section's skills. However, the software gives teachers the flexibility to override that structure, by…
Descriptors: Student Placement, Intelligent Tutoring Systems, Algebra, Mathematics Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nazaretsky, Tanya; Hershkovitz, Sara; Alexandron, Giora – International Educational Data Mining Society, 2019
Sequencing items in adaptive learning systems typically relies on a large pool of interactive question items that are analyzed into a hierarchy of skills, also known as Knowledge Components (KCs). Educational data mining techniques can be used to analyze students response data in order to optimize the mapping of items to KCs, with similarity-based…
Descriptors: Intelligent Tutoring Systems, Item Response Theory, Measurement, Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fancsali, Stephen E.; Li, Hao; Sandbothe, Michael; Ritter, Steven – International Educational Data Mining Society, 2021
Recent work describes methods for systematic, data-driven improvement to instructional content and calls for diverse teams of learning engineers to implement and evaluate such improvements. Focusing on an approach called "design-loop adaptivity," we consider the problem of how developers might use data to target or prioritize particular…
Descriptors: Instructional Development, Instructional Improvement, Data Use, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Choffin, Benoît; Popineau, Fabrice; Bourda, Yolaine; Vie, Jill-Jênn – International Educational Data Mining Society, 2019
Spaced repetition is among the most studied learning strategies in the cognitive science literature. It consists in temporally distributing exposure to an information so as to improve long-term memorization. Providing students with an adaptive and personalized distributed practice schedule would benefit more than just a generic scheduler. However,…
Descriptors: Intervals, Scheduling, Repetition, Memorization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nguyen, Huy Anh; Hou, Xinying; Stamper, John; McLaren, Bruce M. – International Educational Data Mining Society, 2020
A challenge in digital learning games is assessing students' learning behaviors, which are often intertwined with game behaviors. How do we know whether students have learned enough or needed more practice at the end of their game play? To answer this question, we performed post hoc analyses on a prior study of the game "Decimal Point,"…
Descriptors: Computer Games, Educational Games, Game Based Learning, Instructional Effectiveness
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baker, Ryan; Ma, Wei; Zhao, Yuxin; Wang, Shengni; Ma, Zhenjun – International Educational Data Mining Society, 2020
With the development of personalized learning in technological platforms, more data and information are given to instructors on what contents are appropriate for a learner's next step, with an aim of helping them support their students in navigating an optimized learning path that can promote an enhanced learning outcome. In this study, we…
Descriptors: Individualized Instruction, Electronic Learning, Learning Theories, Cognitive Development
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Botelho, Anthony; Patikorn, Thanaporn; Heffernan, Neil T. – International Educational Data Mining Society, 2018
Randomized A/B tests in educational software are not run in a vacuum: often, reams of historical data are available alongside the data from a randomized trial. This paper proposes a method to use this historical data--often highdimensional and longitudinal--to improve causal estimates from A/B tests. The method proceeds in two steps: first, fit a…
Descriptors: Courseware, Data Analysis, Causal Models, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Grimaldi, Phillip; Weatherholtz, Kodi; Hill, Kelli Millwood – International Educational Data Mining Society, 2022
As educational technology platforms become more and more commonplace in education, it is critical that these systems work well across a diverse range of student sub-groups. In this study, we estimated the effectiveness of MAP Accelerator; a large-scale, personalized, web-based, mathematics mastery learning platform. Our analysis placed a…
Descriptors: Educational Technology, Mastery Learning, Learning Management Systems, Middle School Students
Previous Page | Next Page »
Pages: 1  |  2