NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sarafoglou, Alexandra; van der Heijden, Anna; Draws, Tim; Cornelisse, Joran; Wagenmakers, Eric-Jan; Marsman, Maarten – Psychology Learning and Teaching, 2022
Current developments in the statistics community suggest that modern statistics education should be structured holistically, that is, by allowing students to work with real data and to answer concrete statistical questions, but also by educating them about alternative frameworks, such as Bayesian inference. In this article, we describe how we…
Descriptors: Bayesian Statistics, Thinking Skills, Undergraduate Students, Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Satake, Eiki; Amato, Philip P. – AMATYC Review, 2008
This paper presents an alternative version of formulas of conditional probabilities and Bayes' rule that demonstrate how the truth table of elementary mathematical logic applies to the derivations of the conditional probabilities of various complex, compound statements. This new approach is used to calculate the prior and posterior probabilities…
Descriptors: Mathematical Logic, Probability, Mathematics Instruction, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Psychological Review, 2005
In their comment on D. Trafimow, M. D. Lee and E. Wagenmakers argued that the requisite probabilities to use in Bayes's theorem can always be found. In the present reply, the author asserts that M. D. Lee and E. Wagenmakers use a problematic assumption and that finding the requisite probabilities is not straightforward. After describing the…
Descriptors: Probability, Bayesian Statistics, Error Patterns, Criticism
Peer reviewed Peer reviewed
Direct linkDirect link
Stern, Hal S. – Psychological Methods, 2005
I. Klugkist, O. Laudy, and H. Hoijtink (2005) presented a Bayesian approach to analysis of variance models with inequality constraints. Constraints may play 2 distinct roles in data analysis. They may represent prior information that allows more precise inferences regarding parameter values, or they may describe a theory to be judged against the…
Descriptors: Probability, Inferences, Bayesian Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lecoutre, Marie-Paule; Rovira, Katia; Lecoutre, Bruno; Poitevineau, Jacques – Statistics Education Research Journal, 2006
What people mean by randomness should be taken into account when teaching statistical inference. This experiment explored subjective beliefs about randomness and probability through two successive tasks. Subjects were asked to categorize 16 familiar items: 8 real items from everyday life experiences, and 8 stochastic items involving a repeatable…
Descriptors: Statistical Inference, Probability, Mathematics Instruction, College Mathematics