Descriptor
Source
Psychometrika | 32 |
Author
Publication Type
Journal Articles | 26 |
Reports - Evaluative | 15 |
Reports - Research | 8 |
Reports - Descriptive | 2 |
Reports - General | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Yu, Philip L. H. – Psychometrika, 2000
Studied the order-statistics models, extending the usual normal order-statistics model into one in which the underlying random variables followed a multivariate normal distribution. Used a Bayesian approach and the Gibbs sampling technique. Applied the proposed method to analyze presidential election data from the American Psychological…
Descriptors: Bayesian Statistics, Mathematical Models

Wolter, David G.; Earl, Robert W. – Psychometrika, 1972
Descriptors: Bayesian Statistics, Learning, Mathematical Models, Probability

Arminger, Gerhard; Muthen, Bengt O. – Psychometrika, 1998
Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variable as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The proposed estimation methods are illustrated by two simulation studies. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Mathematical Models

Fornell, Claes; Rust, Roland T. – Psychometrika, 1989
A Bayesian approach to the testing of competing covariance structures is developed. Approximate posterior probabilities are easily obtained from the chi square values and other known constants. The approach is illustrated using an example that demonstrates how the prior probabilities can alter results concerning the preferred model specification.…
Descriptors: Bayesian Statistics, Chi Square, Comparative Analysis, Mathematical Models

Ramsay, J. O. – Psychometrika, 1978
Techniques are developed for constructing confidence regions for each of the points in a multidimensional scaling solution. Bayesian credibility regions are discussed, and a technique for displaying these regions is described. (Author/JKS)
Descriptors: Bayesian Statistics, Hypothesis Testing, Mathematical Models, Measurement Techniques

Akaike, Hirotugu – Psychometrika, 1987
The Akaike Information Criterion (AIC) was introduced to extend the method of maximum likelihood to the multimodel situation. Use of the AIC in factor analysis is interesting when it is viewed as the choice of a Bayesian model; thus, wider applications of AIC are possible. (Author/GDC)
Descriptors: Bayesian Statistics, Factor Analysis, Mathematical Models, Maximum Likelihood Statistics

Rigdon, Steven E.; Tsutakawa, Robert K. – Psychometrika, 1983
Latent trait test models for responses to dichotomously scored items are considered from the point of view of parameter estimation using a Bayesian statistical approach and the EM estimation algorithm. An example using the Rasch model is presented. (Author/JKS)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory

Martin, James K.; McDonald, Roderick P. – Psychometrika, 1975
A Bayesian procedure is given for estimation in unrestricted common factor analysis. A choice of the form of the prior distribution is justified. The procedure achieves its objective of avoiding inadmissible estimates of unique variances, and is reasonably insensitive to certain variations in the shape of the prior distribution. (Author/BJG)
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Mathematical Models

Fligner, Michael A.; Verducci, Joseph S. – Psychometrika, 1990
The concept of consensus ordering is defined, and formulas for exact and approximate posterior probabilities for consensus ordering are developed under the assumption of a generalized Mallows' model with a diffuse conjugate prior. These methods are applied to a data set concerning 98 college students. (SLD)
Descriptors: Bayesian Statistics, College Students, Equations (Mathematics), Estimation (Mathematics)

Jannarone, Robert J.; And Others – Psychometrika, 1990
A Bayes estimation procedure for Rasch-type model estimation that has statistical and computational advantages over existing methods is described. It involves constructing posterior distributions based on sample data and artificial data reflecting prior information. Its use for some Rasch-type cases, and how it can improve parameter estimation are…
Descriptors: Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics), Item Response Theory

Meredith, William; Millsap, Roger E. – Psychometrika, 1992
A unified treatment is presented for conditions that should allow detection of measurement bias using statistical procedures involving only observed or manifest variables. Computational results demonstrate that methods for studying bias that rely exclusively on manifest variables are not generally diagnostic of the presence or absence of…
Descriptors: Bayesian Statistics, Equations (Mathematics), Identification, Item Bias

Tsutakawa, Robert K.; Lin, Hsin Ying – Psychometrika, 1986
Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. (Author/LMO)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory

Morrison, Donald G.; Brockway, George – Psychometrika, 1979
A modified beta binomial model is presented for use in analyzing random guessing multiple choice tests and taste tests. Detection probabilities for each item are distributed beta across the population subjects. Properties for the observable distribution of correct responses are derived. Two concepts of true score estimates are presented.…
Descriptors: Bayesian Statistics, Guessing (Tests), Mathematical Models, Multiple Choice Tests

Bockenholt, Ulf – Psychometrika, 1993
A flexible class of stochastic mixture models is introduced and illustrated for analysis and interpretation of individual differences in recurrent choice and other types of count data. These models are derived by specifying elements of the choice process at the individual level. An easy-to-implement algorithm is presented for parameter estimation.…
Descriptors: Bayesian Statistics, Decision Making, Equations (Mathematics), Estimation (Mathematics)

Mislevy, Robert J. – Psychometrika, 1986
This article describes a Bayesian framework for estimation in item response models, with two-stage distributions on both item and examinee populations. Strategies for point and interval estimation are discussed, and a general procedure based on the EM algorithm is presented. (Author/LMO)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory