Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
| Bayesian Statistics | 2 |
| Computer Software | 2 |
| Item Response Theory | 2 |
| Mathematical Models | 2 |
| Monte Carlo Methods | 2 |
| Comparative Analysis | 1 |
| Computer Simulation | 1 |
| Data Analysis | 1 |
| Equations (Mathematics) | 1 |
| Factor Analysis | 1 |
| Markov Processes | 1 |
| More ▼ | |
Author
| Jiao, Hong | 1 |
| Luo, Yong | 1 |
| Segawa, Eisuke | 1 |
Publication Type
| Journal Articles | 2 |
| Reports - Descriptive | 1 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Segawa, Eisuke – Journal of Educational and Behavioral Statistics, 2005
Multi-indicator growth models were formulated as special three-level hierarchical generalized linear models to analyze growth of a trait latent variable measured by ordinal items. Items are nested within a time-point, and time-points are nested within subject. These models are special because they include factor analytic structure. This model can…
Descriptors: Bayesian Statistics, Mathematical Models, Factor Analysis, Computer Simulation

Peer reviewed
Direct link
