Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 2 |
Descriptor
Mathematical Models | 5 |
Monte Carlo Methods | 5 |
Statistical Inference | 5 |
Bayesian Statistics | 3 |
Equations (Mathematics) | 3 |
Hypothesis Testing | 2 |
Regression (Statistics) | 2 |
Young Children | 2 |
Academic Achievement | 1 |
Causal Models | 1 |
Computation | 1 |
More ▼ |
Author
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Reports - Evaluative | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer – Grantee Submission, 2016
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis…
Descriptors: Bayesian Statistics, Mathematical Models, Causal Models, Statistical Bias

Seltzer, Michael H. – Journal of Educational Statistics, 1993
A Bayesian approach to sensitivity of inferences to possible outliers involves recalculating marginal posterior distributions of parameters of interest under assumptions of heavy tails. This strategy is implemented in the hierarchical model setting through Gibbs sampling, a Monte Carlo technique, and illustrated through a reanalysis of data on…
Descriptors: Bayesian Statistics, Elementary Education, Equations (Mathematics), Mathematical Models
Chou, Tungshan; Wang, Lih-Shing – 1992
P. O. Johnson and J. Neyman (1936) proposed a general linear hypothesis testing procedure for testing the null hypothesis of no treatment difference in the presence of some covariates. This is generally known as the Johnson-Neyman (JN) technique. The need for the hypothesis testing step (often omitted) as originally presented and the…
Descriptors: Computer Simulation, Equations (Mathematics), Foreign Countries, Hypothesis Testing

Hakstian, A. Ralph; And Others – Psychometrika, 1988
A model and computation procedure based on classical test score theory are presented for determination of a correlation coefficient corrected for attenuation due to unreliability. Delta and Monte Carlo method applications are discussed. A power analysis revealed no serious loss in efficiency resulting from correction for attentuation. (TJH)
Descriptors: Correlation, Equations (Mathematics), Hypothesis Testing, Mathematical Models