NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Ryan Seth; Jia, Zhigang; Bezaire, Joel – Mathematics Teacher: Learning and Teaching PK-12, 2020
Too often, statistical inference and probability are treated in schools like they are unrelated. In this paper, we describe how we supported students to learn about the role of probability in making inferences with variable data by building models of real world events and using them to simulate repeated samples.
Descriptors: Statistical Inference, Probability, Mathematics Instruction, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kazak, Sibel; Pratt, Dave – Research in Mathematics Education, 2021
We examine the challenges of teaching probability through the use of modelling. We argue how an integrated modelling approach might facilitate a coordinated understanding of distribution by marrying theoretical and data-oriented perspectives and present probability as more connected to the social lives of modern-day students. Research is, however,…
Descriptors: Teaching Methods, Mathematics Instruction, Faculty Development, Probability
Zhang, Zhiyong; Zhang, Danyang – Grantee Submission, 2021
Data science has maintained its popularity for about 20 years. This study adopts a bottom-up approach to understand what data science is by analyzing the descriptions of courses offered by the data science programs in the United States. Through topic modeling, 14 topics are identified from the current curricula of 56 data science programs. These…
Descriptors: Statistics Education, Definitions, Course Descriptions, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kazak, Sibel; Pratt, Dave – Statistics Education Research Journal, 2017
This study considers probability models as tools for both making informal statistical inferences and building stronger conceptual connections between data and chance topics in teaching statistics. In this paper, we aim to explore pre-service mathematics teachers' use of probability models for a chance game, where the sum of two dice matters in…
Descriptors: Preservice Teachers, Probability, Mathematical Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Braham, Hana Manor; Ben-Zvi, Dani – Statistics Education Research Journal, 2017
A fundamental aspect of statistical inference is representation of real-world data using statistical models. This article analyzes students' articulations of statistical models and modeling during their first steps in making informal statistical inferences. An integrated modeling approach (IMA) was designed and implemented to help students…
Descriptors: Foreign Countries, Elementary School Students, Statistical Inference, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ojeda, Mario Miguel; Sahai, Hardeo – International Journal of Mathematical Education in Science and Technology, 2002
Students in statistics service courses are frequently exposed to dogmatic approaches for evaluating the role of randomization in statistical designs, and inferential data analysis in experimental, observational and survey studies. In order to provide an overview for understanding the inference process, in this work some key statistical concepts in…
Descriptors: Probability, Data Analysis, Sampling, Statistical Inference
Peer reviewed Peer reviewed
Galbraith, Peter – Teaching Mathematics and Its Applications, 1996
Suggests ways for using data from championship tennis as a means for exploring probabilistic models, especially binomial probability. Examples include the probability of winning a service point and the probability of winning a service game using data from tables and graphs. (AIM)
Descriptors: Higher Education, Mathematical Applications, Mathematical Models, Mathematics Instruction
Peer reviewed Peer reviewed
Arnold, Barry C.; And Others – Psychometrika, 1993
Inference is considered for the marginal distribution of "X" when ("X", "Y") has a truncated bivariate normal distribution. The "Y" variable is truncated, but only the "X" values are observed. A sample of 87 Otis test scores is shown to be well described by this model. (SLD)
Descriptors: Admission (School), Computer Simulation, Equations (Mathematics), Mathematical Models