Descriptor
Mathematics Instruction | 5 |
Patternmaking | 5 |
Problem Solving | 5 |
Mathematics Curriculum | 3 |
Patterns in Mathematics | 3 |
Mathematics Education | 2 |
Secondary Education | 2 |
Secondary School Mathematics | 2 |
Active Learning | 1 |
Activities | 1 |
Cognitive Processes | 1 |
More ▼ |
Author
Chinn, Phyllis Zweig | 1 |
Maletsky, Evan M., Ed. | 1 |
Parker, Dennis | 1 |
Scheuer, Donald W., Jr. | 1 |
Thorpe, Jim | 1 |
Williams, David E. | 1 |
Publication Type
Journal Articles | 5 |
Guides - General | 3 |
Reports - Descriptive | 2 |
Guides - Classroom - Teacher | 1 |
Education Level
Audience
Practitioners | 3 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Thorpe, Jim – Mathematics Teaching, 1979
A discussion of what constitutes proof is given. Methods of teaching proof in a more intuitive and informal way than is usually done are suggested. (MK)
Descriptors: Elementary Secondary Education, Mathematics Curriculum, Mathematics Education, Mathematics Instruction

Maletsky, Evan M., Ed.; And Others – Mathematics Teacher, 1979
Mathematical activities suitable for reproduction as worksheets are suggested. These activities are adaptations of the classic tower puzzle and are intended to help students discover patterns, make generalizations, and use the strategy of solving simpler problems in order to solve a more difficult one. (MK)
Descriptors: Mathematical Enrichment, Mathematics Curriculum, Mathematics Instruction, Patternmaking
Parker, Dennis – Mathematics Teacher, 2005
A problem sometimes called Moser's circle problem where a circular region has to be partitioned with chords without any three chords intersecting at one point, is discussed. It is shown that Moser's circle problem makes the students to use a variety of mathematical tools to find correct solutions to problems and gives an opportunity to think about…
Descriptors: Active Learning, Mathematics Instruction, Geometric Concepts, Geometry

Scheuer, Donald W., Jr.; Williams, David E. – Arithmetic Teacher, 1980
Two posters that can be used to provide experience in recognizing patterns in sequences of numbers are provided. Suggested number sequences for different grade levels are given. (MK)
Descriptors: Activities, Educational Media, Elementary Education, Elementary School Mathematics

Chinn, Phyllis Zweig – Mathematics Teacher, 1988
Explores the following classical problem: given any 30 points on a circle, join them in pairs by segments in all possible ways. What is the greatest number of nonoverlapping regions into which the interior of the circle can be separated? Presents strategies for solving this problem. (PK)
Descriptors: Creative Thinking, Induction, Logical Thinking, Mathematical Concepts