Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 14 |
Descriptor
Bayesian Statistics | 16 |
Markov Processes | 16 |
Maximum Likelihood Statistics | 16 |
Monte Carlo Methods | 15 |
Computation | 9 |
Item Response Theory | 8 |
Sample Size | 6 |
Comparative Analysis | 5 |
Statistical Analysis | 5 |
Models | 4 |
Simulation | 4 |
More ▼ |
Source
Author
Babcock, Ben | 1 |
Bolin, Jocelyn H. | 1 |
Cohen, Allan S. | 1 |
Depaoli, Sarah | 1 |
Dillenbourg, Pierre | 1 |
Edwards, Julianne M. | 1 |
Faucon, Louis | 1 |
Finch, Holmes | 1 |
Finch, W. Holmes | 1 |
Hodge, Kari J. | 1 |
Jeon, Minjeong | 1 |
More ▼ |
Publication Type
Reports - Research | 12 |
Journal Articles | 11 |
Speeches/Meeting Papers | 3 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 2 |
Numerical/Quantitative Data | 1 |
Education Level
Audience
Location
South Korea | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Comprehensive Tests of Basic… | 1 |
Law School Admission Test | 1 |
What Works Clearinghouse Rating
Babcock, Ben; Hodge, Kari J. – Educational and Psychological Measurement, 2020
Equating and scaling in the context of small sample exams, such as credentialing exams for highly specialized professions, has received increased attention in recent research. Investigators have proposed a variety of both classical and Rasch-based approaches to the problem. This study attempts to extend past research by (1) directly comparing…
Descriptors: Item Response Theory, Equated Scores, Scaling, Sample Size
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Faucon, Louis; Kidzinski, Lukasz; Dillenbourg, Pierre – International Educational Data Mining Society, 2016
Large-scale experiments are often expensive and time consuming. Although Massive Online Open Courses (MOOCs) provide a solid and consistent framework for learning analytics, MOOC practitioners are still reluctant to risk resources in experiments. In this study, we suggest a methodology for simulating MOOC students, which allow estimation of…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Online Courses
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Lamsal, Sunil – ProQuest LLC, 2015
Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…
Descriptors: Item Response Theory, Monte Carlo Methods, Maximum Likelihood Statistics, Markov Processes
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich – Psychological Methods, 2013
The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…
Descriptors: Statistical Analysis, Computation, Interpersonal Relationship, Models
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Descriptors: Markov Processes, Factor Analysis, Statistical Bias, Evaluation Research
Jeon, Minjeong – ProQuest LLC, 2012
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Descriptors: Hierarchical Linear Modeling, Computation, Measurement, Maximum Likelihood Statistics
Kieftenbeld, Vincent; Natesan, Prathiba – Applied Psychological Measurement, 2012
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Descriptors: Test Length, Markov Processes, Item Response Theory, Monte Carlo Methods
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Kim, Seock-Ho; Cohen, Allan S. – 1998
The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Higher Education, Markov Processes
Previous Page | Next Page ยป
Pages: 1 | 2