NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sen, Sedat; Cohen, Allan S. – Educational and Psychological Measurement, 2023
The purpose of this study was to examine the effects of different data conditions on item parameter recovery and classification accuracy of three dichotomous mixture item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL. Manipulated factors in the simulation included the sample size (11 different sample sizes from 100 to 5000), test…
Descriptors: Sample Size, Item Response Theory, Accuracy, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Pokropek, Artur – Journal of Educational and Behavioral Statistics, 2016
A response model that is able to detect guessing behaviors and produce unbiased estimates in low-stake conditions using timing information is proposed. The model is a special case of the grade of membership model in which responses are modeled as partial members of a class that is affected by motivation and a class that responds only according to…
Descriptors: Reaction Time, Models, Guessing (Tests), Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Koziol, Natalie A. – Applied Measurement in Education, 2016
Testlets, or groups of related items, are commonly included in educational assessments due to their many logistical and conceptual advantages. Despite their advantages, testlets introduce complications into the theory and practice of educational measurement. Responses to items within a testlet tend to be correlated even after controlling for…
Descriptors: Classification, Accuracy, Comparative Analysis, Models
Kim, Seock-Ho; Cohen, Allan S. – 1997
Type I error rates of the likelihood ratio test for the detection of differential item functioning (DIF) were investigated using Monte Carlo simulations. The graded response model with five ordered categories was used to generate data sets of a 30-item test for samples of 300 and 1,000 simulated examinees. All DIF comparisons were simulated by…
Descriptors: Ability, Classification, Computer Simulation, Estimation (Mathematics)
Owston, Ronald D. – 1979
The development of a probabilistic model for validating Gange's learning hierarchies is described. Learning hierarchies are defined as paired networks of intellectual tasks arranged so that a substantial amount of positive transfer occurs from tasks in a lower position to connected ones in a higher position. This probabilistic validation technique…
Descriptors: Associative Learning, Classification, Difficulty Level, Mathematical Models