NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kohli, Nidhi; Peralta, Yadira; Zopluoglu, Cengiz; Davison, Mark L. – International Journal of Behavioral Development, 2018
Piecewise mixed-effects models are useful for analyzing longitudinal educational and psychological data sets to model segmented change over time. These models offer an attractive alternative to commonly used quadratic and higher-order polynomial models because the coefficients obtained from fitting the model have meaningful substantive…
Descriptors: Hierarchical Linear Modeling, Longitudinal Studies, Maximum Likelihood Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Ling; Luo, Wen – Journal of Experimental Education, 2018
Piecewise GMM with unknown turning points is a new procedure to investigate heterogeneous subpopulations' growth trajectories consisting of distinct developmental phases. Unlike the conventional PGMM, which relies on theory or experiment design to specify turning points a priori, the new procedure allows for an optimal location of turning points…
Descriptors: Statistical Analysis, Models, Classification, Comparative Analysis
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
de Rooij, Mark; Schouteden, Martijn – Multivariate Behavioral Research, 2012
Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…
Descriptors: Statistical Analysis, Longitudinal Studies, Data, Models
Jeon, Minjeong – ProQuest LLC, 2012
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Descriptors: Hierarchical Linear Modeling, Computation, Measurement, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hsieh, Chueh-An; Maier, Kimberly S. – International Journal of Research & Method in Education, 2009
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…
Descriptors: Equal Education, Bayesian Statistics, Data Analysis, Comparative Analysis