Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 6 |
Descriptor
Computation | 6 |
Markov Processes | 6 |
Maximum Likelihood Statistics | 6 |
Monte Carlo Methods | 6 |
Statistical Analysis | 6 |
Bayesian Statistics | 5 |
Models | 3 |
Sample Size | 3 |
Statistical Bias | 3 |
Error of Measurement | 2 |
Hierarchical Linear Modeling | 2 |
More ▼ |
Source
Educational and Psychological… | 2 |
Journal of Educational and… | 2 |
Applied Psychological… | 1 |
Psychological Methods | 1 |
Author
Bolin, Jocelyn H. | 1 |
Edwards, Julianne M. | 1 |
Finch, Holmes | 1 |
Finch, W. Holmes | 1 |
Kenny, David A. | 1 |
Ludtke, Oliver | 1 |
McNeish, Daniel M. | 1 |
Roberts, James S. | 1 |
Robitzsch, Alexander | 1 |
Smithson, Michael | 1 |
Stenger, Rachel | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 5 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich – Psychological Methods, 2013
The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…
Descriptors: Statistical Analysis, Computation, Interpersonal Relationship, Models
Roberts, James S.; Thompson, Vanessa M. – Applied Psychological Measurement, 2011
A marginal maximum a posteriori (MMAP) procedure was implemented to estimate item parameters in the generalized graded unfolding model (GGUM). Estimates from the MMAP method were compared with those derived from marginal maximum likelihood (MML) and Markov chain Monte Carlo (MCMC) procedures in a recovery simulation that varied sample size,…
Descriptors: Statistical Analysis, Markov Processes, Computation, Monte Carlo Methods
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models