Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 9 |
Descriptor
Bayesian Statistics | 18 |
Maximum Likelihood Statistics | 18 |
Statistical Distributions | 18 |
Computation | 8 |
Estimation (Mathematics) | 8 |
Monte Carlo Methods | 7 |
Mathematical Models | 6 |
Goodness of Fit | 5 |
Item Response Theory | 5 |
Test Items | 5 |
Latent Trait Theory | 4 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 14 |
Reports - Research | 10 |
Reports - Evaluative | 5 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 2 |
Dissertations/Theses -… | 1 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 1 | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Higher Education | 1 |
More ▼ |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
What Works Clearinghouse Rating
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
MacDonald, George T. – ProQuest LLC, 2014
A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…
Descriptors: Simulation, Item Response Theory, Models, Test Items
May, Henry – Society for Research on Educational Effectiveness, 2014
Interest in variation in program impacts--How big is it? What might explain it?--has inspired recent work on the analysis of data from multi-site experiments. One critical aspect of this problem involves the use of random or fixed effect estimates to visualize the distribution of impact estimates across a sample of sites. Unfortunately, unless the…
Descriptors: Educational Research, Program Effectiveness, Research Problems, Computation
Seo, Dong Gi; Weiss, David J. – Educational and Psychological Measurement, 2013
The usefulness of the l[subscript z] person-fit index was investigated with achievement test data from 20 exams given to more than 3,200 college students. Results for three methods of estimating ? showed that the distributions of l[subscript z] were not consistent with its theoretical distribution, resulting in general overfit to the item response…
Descriptors: Achievement Tests, College Students, Goodness of Fit, Item Response Theory
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Zhu, Mu; Lu, Arthur Y. – Journal of Statistics Education, 2004
In Bayesian statistics, the choice of the prior distribution is often controversial. Different rules for selecting priors have been suggested in the literature, which, sometimes, produce priors that are difficult for the students to understand intuitively. In this article, we use a simple heuristic to illustrate to the students the rather…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Probability, Statistical Distributions

Swaminathan, Hariharan; Gifford, Janice A. – Psychometrika, 1985
A Bayesian procedure is developed for the estimation of parameters in the two-parameter logistic item response model. Joint modal estimates of the parameters are obtained and procedures for the specification of prior information are described. (Author/LMO)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory, Mathematical Models
Abdel-fattah, Abdel-fattah A. – 1994
The accuracy of estimation procedures in item response theory was studied using Monte Carlo methods and varying sample size, number of subjects, and distribution of ability parameters for: (1) joint maximum likelihood as implemented in the computer program LOGIST; (2) marginal maximum likelihood; and (3) marginal Bayesian procedures as implemented…
Descriptors: Ability, Bayesian Statistics, Estimation (Mathematics), Maximum Likelihood Statistics

Lin, Miao-Hsiang; Hsiung, Chao A. – Psychometrika, 1994
Two simple empirical approximate Bayes estimators are introduced for estimating domain scores under binomial and hypergeometric distributions respectively. Criteria are established regarding use of these functions over maximum likelihood estimation counterparts. (SLD)
Descriptors: Adaptive Testing, Bayesian Statistics, Computation, Equations (Mathematics)

Harwell, Michael R.; Baker, Frank B. – Applied Psychological Measurement, 1991
Previous work on the mathematical and implementation details of the marginalized maximum likelihood estimation procedure is extended to encompass the marginalized Bayesian procedure for estimating item parameters of R. J. Mislevy (1986) and to communicate this procedure to users of the BILOG computer program. (SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics), Item Response Theory

Swaminathan, Hariharan; Gifford, Janice A. – Psychometrika, 1986
A joint Bayesian estimation procedure for estimating parameters in the three-parameter logistic model is developed. Simulation studies show that the Bayesian procedure (1) ensures that the estimates stay in the parameter space and (2) produces better estimates than the joint maximum likelihood procedure. (Author/BS)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Goodness of Fit, Latent Trait Theory

Mislevy, Robert J. – Psychometrika, 1984
Assuming vectors of item responses depend on ability through a fully specified item response model, this paper presents maximum likelihood equations for estimating the population parameters without estimating an ability parameter for each subject. Asymptotic standard errors, tests of fit, computing approximations, and details of four special cases…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Goodness of Fit, Latent Trait Theory
Previous Page | Next Page ยป
Pages: 1 | 2