NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 76 to 90 of 2,397 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kaps, A.; Starmach, F. – Physics Teacher, 2020
Smartphones and their internal sensors offer new options for an experimental access to teach physics at secondary schools and universities. Especially in the field of mechanics, a number of smartphone-based experiments are known illustrating, e.g., linear and pendulum motions as well as rotational motions using the internal MEMS accelerometer and…
Descriptors: Physics, Handheld Devices, Measurement Equipment, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Tham, Claire; Yeo, Robin; Natarajan, Visshal; Zhang, Tianqin; Chen, Jer-Ming; Krishnaswamy, Lakshminarasimhan; Tan, Da Yang – Physics Teacher, 2022
In this article, we demonstrate the use of a simple pendulum to explore the concepts of kinematics and dynamics. A simple homemade pendulum and a phone-based accelerometer are used to determine, at various points in time, the acceleration of a moving train. The dynamical and kinematics data from the homemade pendulum and the accelerator can then…
Descriptors: Laboratory Equipment, Science Instruction, Computation, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Giulotto, Enrico; Malgieri, Massimiliano – Physics Education, 2022
The distinction between pressure in a liquid and in a gas is often treated in a cursory way, or not treated at all, even in university level textbooks. Most texts fail to point out the relation between pressure and density in a gas as compared to pressure in a--virtually incompressible--liquid. In many instances this also results in a dismissive…
Descriptors: Science Instruction, College Science, Secondary School Science, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Datsenko, I.; Lozovenko, O.; Minaiev, Yu; Zadoian, M. – Physics Education, 2019
The purpose of this publication is to bring attention to some physics problems whose answers seem to be paradoxical and, at first glance, do not agree with a limiting case check. Solving a problem on the motion of a system consisting of two masses and a spring, it is natural to examine the answer by considering a case when a spring constant is…
Descriptors: Problem Solving, Motion, Mathematical Models, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Luigia Brandimarte; Alisan Funk; Benjamin Richter – European Journal of Engineering Education, 2024
Our multifaceted society calls for engineers that are not only experts in their domain, but possess the flexibility to understand adjacent disciplines. The inclusion of the performing arts in engineering curricula has shown potential for cultivating creativity and equipping STEM students with problem-solving abilities. However, the literature…
Descriptors: Engineering Education, Mechanics (Physics), Theater Arts, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bansal, Monika; Bansal, Sunil; Kumar, Ramandeep – Physics Education, 2021
Simulation of physics phenomena is an indispensable part of experimental studies. Undergraduate and postgraduate physics students are often introduced to the simulation of various phenomena as one of the most important pedagogical tools. In this document, we demonstrate the simulations of the two-body decay of a particle and equilibrium states in…
Descriptors: Physics, Simulation, College Science, Mechanics (Physics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Singamneni, Sarat – Education Sciences, 2021
Building a technology-driven world appears to be the main motivational force behind students choosing to undertake engineering studies. The first year of engineering education plays a significant role in demonstrating sufficient mathematical and scientific rigor to satisfy these motivational factors. The common applied mechanics courses play a…
Descriptors: Engineering Education, Introductory Courses, Mechanics (Physics), STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sliško, Josip; Topalovic, Tatjana Markovic; Božic, Mirjana – Physics Teacher, 2021
The question from the title is raised because in almost all introductory physics courses/textbooks the atmospheric pressure has been attributed to the weight of the column of air from a given level in the atmosphere up to its top. "Air is pressing on air." However the same textbooks, in the chapter on the kinetic theory of gases, tell…
Descriptors: Science Instruction, Molecular Structure, Scientific Concepts, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Hitier, Mathilde; González-Martín, Alejandro S. – International Journal of Research in Undergraduate Mathematics Education, 2022
Of the many disciplines that rely on calculus, physics is among those with the strongest connections to this branch of mathematics. For instance, the derivative--one of the key notions of calculus--is used to describe velocity and acceleration, which play a central role in mechanics. In post-secondary education, in particular at the college level,…
Descriptors: Calculus, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Iwuanyanwu, Paul – International Journal of Teaching and Learning in Higher Education, 2022
Argumentation is central to science learning. Students in every domain of science should have the opportunity to develop the ability to think and act in ways associated with argumentation. When engaged in argumentation, students learn how to puzzle through problems, to see multiple ways of finding solutions, to gather and evaluate evidence on…
Descriptors: Persuasive Discourse, Teaching Methods, Problem Solving, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Herrera-Suárez, H. J.; Morales-Aranguren, H. L.; Muñoz, J. H.; Ossa-Novoa, J. – Physics Education, 2022
The oscillations of one mass "m" suspended between two different springs, assuming a friction force proportional to the velocity [minuscule], have been studied. For this purpose, an assembly for this system has been made. The movement of the mass is recorded with a smartphone and analysed with "Tracker." It is obtained that the…
Descriptors: Mechanics (Physics), Motion, Energy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Goev, Gosho; Velinov, Tzvetan – Physics Education, 2022
In this paper, we propose a simple yet generic and versatile method to measure the position of a moving body as a function of time. Apart from very basic equipment such as carts and wheels, only a laser pointer or a similar device and a smartphone are necessary. By attaching a source of light to a cart and video filming its movement on a…
Descriptors: Measurement Techniques, Science Instruction, Motion, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Persson, Rasmus A. X. – Physics Education, 2022
We consider the operation of the hypothetical mechanical vehicle driven by an engine powered by small rockets introduced by P D Hanstead in the inaugural volume of this journal. Hanstead arrived at three contradictory conclusions regarding the change in velocity should some of the rockets malfunction at a particular time. This thought experiment…
Descriptors: Physics, Science Instruction, Motor Vehicles, Space Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
De Luca, R.; Faella, O. – Physics Education, 2022
The static equilibrium properties of a spool, resting on an incline and subject to the tension exerted by a string wrapped around the core cylinder, are studied by means of Newtonian mechanics. The overall behaviour of this system is imagined to be similar to that of a doggie kept on a leash. Starting from the well-known mechanical properties of…
Descriptors: Science Instruction, Mechanics (Physics), Inquiry, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Konstantogiannis, Spiros – European Journal of Physics Education, 2020
In an attempt to address the need for an alternative presentation of the quantum mechanical position and momentum spaces, we provide a presentation that is more constructive and less calculative than those found in literature. Our approach is based on a simple, intuitively understood relation that expresses the physical equivalence of the quantum…
Descriptors: Quantum Mechanics, Mechanics (Physics), Science Instruction, Motion
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  160