NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Mengxue; Baral, Sami; Heffernan, Neil; Lan, Andrew – International Educational Data Mining Society, 2022
Automatic short answer grading is an important research direction in the exploration of how to use artificial intelligence (AI)-based tools to improve education. Current state-of-the-art approaches use neural language models to create vectorized representations of students responses, followed by classifiers to predict the score. However, these…
Descriptors: Grading, Mathematics Instruction, Artificial Intelligence, Form Classes (Languages)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Mengxue; Heffernan, Neil; Lan, Andrew – International Educational Data Mining Society, 2023
Automated scoring of student responses to open-ended questions, including short-answer questions, has great potential to scale to a large number of responses. Recent approaches for automated scoring rely on supervised learning, i.e., training classifiers or fine-tuning language models on a small number of responses with human-provided score…
Descriptors: Scoring, Computer Assisted Testing, Mathematics Instruction, Mathematics Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Ocumpaugh, Jaclyn; Baker, Ryan; Gowda, Sujith; Heffernan, Neil; Heffernan, Cristina – British Journal of Educational Technology, 2014
Information and communication technology (ICT)-enhanced research methods such as educational data mining (EDM) have allowed researchers to effectively model a broad range of constructs pertaining to the student, moving from traditional assessments of knowledge to assessment of engagement, meta-cognition, strategy and affect. The automated…
Descriptors: Research Methodology, Educational Research, Information Technology, Data Analysis