Publication Date
In 2025 | 4 |
Since 2024 | 34 |
Descriptor
Factor Analysis | 34 |
Models | 34 |
Correlation | 11 |
Foreign Countries | 8 |
Comparative Analysis | 6 |
Goodness of Fit | 6 |
Item Analysis | 6 |
Measurement Techniques | 6 |
Simulation | 6 |
Item Response Theory | 5 |
Sample Size | 5 |
More ▼ |
Source
Author
Ana Hernández-Dorado | 2 |
Lisa Calvocoressi | 2 |
Pere J. Ferrando | 2 |
Tenko Raykov | 2 |
Andreas Frey | 1 |
Andreas Gold | 1 |
Anjali Chopra | 1 |
Antonio Fabio Bella | 1 |
Areti Panaoura | 1 |
Asena Yucedaglar | 1 |
Athanasios Gagatsis | 1 |
More ▼ |
Publication Type
Journal Articles | 30 |
Reports - Research | 26 |
Dissertations/Theses -… | 3 |
Information Analyses | 3 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 8 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 1 | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
More ▼ |
Audience
Location
Turkey | 2 |
China | 1 |
Cyprus | 1 |
Japan | 1 |
Mexico | 1 |
United Kingdom | 1 |
United States | 1 |
Vietnam | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal… | 1 |
Satisfaction With Life Scale | 1 |
What Works Clearinghouse Rating
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2025
Most methods for structural equation modeling (SEM) focused on the analysis of covariance matrices. However, "Historically, interesting psychological theories have been phrased in terms of correlation coefficients." This might be because data in social and behavioral sciences typically do not have predefined metrics. While proper methods…
Descriptors: Correlation, Statistical Analysis, Models, Tests
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Bilge Bal-Sezerel; Deniz Arslan; Ugur Sak – Measurement: Interdisciplinary Research and Perspectives, 2025
In this study, the factorial invariance of the ASIS (Anadolu-Sak Intelligence Scale) was examined across time. Data were obtained from there groups of first-grade students who were administered the ASIS in 2020, 2021, and 2022. The analyses were conducted using multisample confirmatory factor analyses. Factorial invariance was tested with six…
Descriptors: Intelligence Tests, Grade 1, Factor Structure, Scores
Sooyong Lee; Suhwa Han; Seung W. Choi – Journal of Educational Measurement, 2024
Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and…
Descriptors: Factor Analysis, Bayesian Statistics, Test Bias, Item Response Theory
Kelvin T. Afolabi; Timothy R. Konold – Practical Assessment, Research & Evaluation, 2024
Exploratory structural equation (ESEM) has received increased attention in the methodological literature as a promising tool for evaluating latent variable measurement models. It overcomes many of the limitations attached to exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), while capitalizing on the benefits of each. Given…
Descriptors: Measurement Techniques, Factor Analysis, Structural Equation Models, Comparative Analysis
Tenko Raykov; Lisa Calvocoressi; Randall E. Schumacker – Measurement: Interdisciplinary Research and Perspectives, 2024
This paper is concerned with the process of selecting between the increasingly popular bi-factor model and the second-order factor model in measurement research. It is indicated that in certain settings widely used in empirical studies, the second-order model is nested in the bi-factor model and obtained from the latter after imposing appropriate…
Descriptors: Factor Analysis, Decision Making, Computer Software, Measurement Techniques
Ishfaq Majid; Y. Vijaya Lakshmi – Online Submission, 2024
The models of E-learning Readiness (ELR) are basically designed to understand the process of obtaining the basic information necessary for measuring ELR among participants. They help organizations to identify the requirements for designing, developing and implementing E-learning. These models not only help the organizations to identify the degree…
Descriptors: Electronic Learning, Models, Readiness, Content Analysis
Christine E. Pacewicz; Christopher R. Hill; Haeyong Chun; Nicholas D. Myers – Measurement in Physical Education and Exercise Science, 2024
Confirmatory factor analysis (CFA) is a commonly used statistical technique. Recommendations for evaluating CFA highlight scholars should outline the expected model, conduct data screening, report model estimation and evaluation, and report key information about results to provide evidence for latent variables. The purpose of the current study was…
Descriptors: Factor Analysis, Physical Education, Exercise, Kinesiology
Jingwen Wang; Xiaohong Yang; Dujuan Liu – International Journal of Web-Based Learning and Teaching Technologies, 2024
The large scale expansion of online courses has led to the crisis of course quality issues. In this study, we first established an evaluation index system for online courses using factor analysis, encompassing three key constructs: course resource construction, course implementation, and teaching effectiveness. Subsequently, we employed factor…
Descriptors: Educational Quality, Online Courses, Course Evaluation, Models
Karl Schweizer; Andreas Gold; Dorothea Krampen; Stefan Troche – Educational and Psychological Measurement, 2024
Conceptualizing two-variable disturbances preventing good model fit in confirmatory factor analysis as item-level method effects instead of correlated residuals avoids violating the principle that residual variation is unique for each item. The possibility of representing such a disturbance by a method factor of a bifactor measurement model was…
Descriptors: Correlation, Factor Analysis, Measurement Techniques, Item Analysis
Tenko Raykov; Christine DiStefano; Lisa Calvocoressi – Educational and Psychological Measurement, 2024
This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with…
Descriptors: Bayesian Statistics, Models, Decision Making, Comparative Analysis
Jochen Ranger; Christoph König; Benjamin W. Domingue; Jörg-Tobias Kuhn; Andreas Frey – Journal of Educational and Behavioral Statistics, 2024
In the existing multidimensional extensions of the log-normal response time (LNRT) model, the log response times are decomposed into a linear combination of several latent traits. These models are fully compensatory as low levels on traits can be counterbalanced by high levels on other traits. We propose an alternative multidimensional extension…
Descriptors: Models, Statistical Distributions, Item Response Theory, Response Rates (Questionnaires)
Sena Dogruyol; Bilge Bakir Aygar; Nezaket Bilge Uzun; Asena Yucedaglar – Journal on Educational Psychology, 2024
The Satisfaction with Life Scale (SWLS), a popular and widely used measurement tool in cross-cultural research, evaluates life satisfaction. Even though numerous studies have demonstrated factorial validity across a range of samples and cultures, the topic of factorial invariance across various subgroups is still up for debate. There are…
Descriptors: Measures (Individuals), Life Satisfaction, Factor Structure, Models
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit