NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Higher Education11
Postsecondary Education11
High Schools1
Secondary Education1
Two Year Colleges1
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Podworny, Susanne; Biehler, Rolf – Mathematical Thinking and Learning: An International Journal, 2022
Inferential reasoning is an integral part of science and civic society, but research shows that it is a problematic domain for many people. One possibility for a more accessible approach to inferential reasoning is to use randomization tests via computer simulations. A case study was conducted with primary preservice teachers after they had passed…
Descriptors: Statistics Education, Statistical Inference, Simulation, Preservice Teacher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Kuhn, Jörg Tobias; Ortner, Tuulia M. – Educational and Psychological Measurement, 2020
The hierarchical model of van der Linden is the most popular model for responses and response times in tests. It is composed of two separate submodels--one for the responses and one for the response times--that are joined at a higher level. The submodel for the response times is based on the lognormal distribution. The lognormal distribution is a…
Descriptors: Reaction Time, Tests, Statistical Distributions, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Finch, Holmes – Practical Assessment, Research & Evaluation, 2022
Researchers in many disciplines work with ranking data. This data type is unique in that it is often deterministic in nature (the ranks of items "k"-1 determine the rank of item "k"), and the difference in a pair of rank scores separated by "k" units is equivalent regardless of the actual values of the two ranks in…
Descriptors: Data Analysis, Statistical Inference, Models, College Faculty
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zimmermann, Judith; Brodersen, Kay H.; Heinimann, Hans R.; Buhmann, Joachim M. – Journal of Educational Data Mining, 2015
The graduate admissions process is crucial for controlling the quality of higher education, yet, rules-of-thumb and domain-specific experiences often dominate evidence-based approaches. The goal of the present study is to dissect the predictive power of undergraduate performance indicators and their aggregates. We analyze 81 variables in 171…
Descriptors: Undergraduate Students, Graduate Students, Academic Achievement, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Berenson, Mark L. – Decision Sciences Journal of Innovative Education, 2013
There is consensus in the statistical literature that severe departures from its assumptions invalidate the use of regression modeling for purposes of inference. The assumptions of regression modeling are usually evaluated subjectively through visual, graphic displays in a residual analysis but such an approach, taken alone, may be insufficient…
Descriptors: Spreadsheets, Computer Software, Regression (Statistics), Models
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Journal of Experimental Psychology: General, 2011
Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…
Descriptors: Bayesian Statistics, Statistical Inference, Models, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Martin, Andrew J.; Wilson, Rachel; Liem, Gregory Arief D.; Ginns, Paul – Journal of Higher Education, 2014
In the context of "academic momentum," a longitudinal study of university students (N = 904) showed high school achievement and ongoing university achievement predicted subsequent achievement through university. However, the impact of high school achievement diminished, while additive effects of ongoing university achievement continued.…
Descriptors: Foreign Countries, College Students, Longitudinal Studies, Academic Achievement
Rodriguez Jaime, Luis Francisco – ProQuest LLC, 2013
Little is known about students' perceptions of online enrollment processes. Student satisfaction is part of the assessment required for accreditation, but evidence suggests that college administrators are oriented to retention and graduation rates rather than to consumer perception. The purpose of this descriptive quantitative study was to develop…
Descriptors: Enrollment Trends, Enrollment Influences, Higher Education, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Graham, Aislin R.; Sherry, Simon B.; Stewart, Sherry H.; Sherry, Dayna L.; McGrath, Daniel S.; Fossum, Kristin M.; Allen, Stephanie L. – Journal of Counseling Psychology, 2010
Perfectionistic concerns (i.e., negative reactions to failures, concerns over others' criticism and expectations, and nagging self-doubts) are a putative risk factor for depressive symptoms. This study proposes and supports the existential model of perfectionism and depressive symptoms (EMPDS), a conceptual model aimed at explaining why…
Descriptors: Foreign Countries, Risk, Depression (Psychology), Models
Peer reviewed Peer reviewed
Direct linkDirect link
Fox, J.-P.; Wyrick, Cheryl – Journal of Educational and Behavioral Statistics, 2008
The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…
Descriptors: Item Response Theory, Models, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Caulkins, Jonathan P. – Journal of Policy Analysis and Management, 2002
In this article, the author discusses the use in policy analysis of models that incorporate uncertainty. He believes that all models should consider incorporating uncertainty, but that at the same time it is important to understand that sampling variability is not usually the dominant driver of uncertainty in policy analyses. He also argues that…
Descriptors: Statistical Inference, Models, Policy Analysis, Sampling