NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
T. S. Kutaka; P. Chernyavskiy; J. Sarama; D. H. Clements – Grantee Submission, 2023
Investigators often rely on the proportion of correct responses in an assessment when describing the impact of early mathematics interventions on child outcomes. Here, we propose a shift in focus to the relative sophistication of problem-solving strategies and offer methodological guidance to researchers interested in working with strategies. We…
Descriptors: Learning Trajectories, Problem Solving, Mathematics Instruction, Early Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Forthmann, Boris; Förster, Natalie; Souvignier, Elmar – Journal of Intelligence, 2022
Monitoring the progress of student learning is an important part of teachers' data-based decision making. One such tool that can equip teachers with information about students' learning progress throughout the school year and thus facilitate monitoring and instructional decision making is learning progress assessments. In practical contexts and…
Descriptors: Learning Processes, Progress Monitoring, Robustness (Statistics), Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Dan; Opfer, John E. – Developmental Psychology, 2017
Representations of numerical value have been assessed by using bounded (e.g., 0-1,000) and unbounded (e.g., 0-?) number-line tasks, with considerable debate regarding whether 1 or both tasks elicit unique cognitive strategies (e.g., addition or subtraction) and require unique cognitive models. To test this, we examined how well a mixed log-linear…
Descriptors: Computation, Numbers, Children, Cognitive Development
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kaplan, David; Chen, Jianshen – Society for Research on Educational Effectiveness, 2013
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Descriptors: Bayesian Statistics, Models, Probability, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Rojas, Raul; Iglesias, Aquiles – Child Development, 2013
Although the research literature regarding language growth trajectories is burgeoning, the shape and direction of English Language Learners' (ELLs) language growth trajectories are largely not known. This study used growth curve modeling to determine the shape of ELLs' language growth trajectories across 12,248 oral narrative language samples…
Descriptors: English Language Learners, Spanish Speaking, Second Language Learning, Oral Language
Peer reviewed Peer reviewed
Direct linkDirect link
Palardy, Gregory J. – Educational and Psychological Measurement, 2010
This article examines the multilevel linear crossed random effects growth model for estimating teacher and school effects from repeated measurements of student achievement. Results suggest that even a small degree of unmodeled nonlinearity can result in a substantial upward bias in the magnitude of the teacher effect, which raises concerns about…
Descriptors: Computation, Models, Statistical Analysis, Academic Achievement