NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 242 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Polat, Murat – Online Submission, 2023
This research focuses on better understanding the nature of pre-service teachers' four-frame leadership orientations. As it is known, the phenomenon of leadership still continues to be a research topic in the field of educational administration. But, these studies carried out on teachers and school administrators. As future teachers and school…
Descriptors: Preservice Teachers, Leadership Styles, Models, Gender Differences
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gorgun, Guher; Yildirim-Erbasli, Seyma N.; Epp, Carrie Demmans – International Educational Data Mining Society, 2022
The need to identify student cognitive engagement in online-learning settings has increased with our use of online learning approaches because engagement plays an important role in ensuring student success in these environments. Engaged students are more likely to complete online courses successfully, but this setting makes it more difficult for…
Descriptors: Online Courses, Group Discussion, Learner Engagement, Student Participation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ren, Zhiyun; Ning, Xia; Lan, Andrew S.; Rangwala, Huzefa – International Educational Data Mining Society, 2019
Over the past decade, low graduation and retention rates have plagued higher education institutions. To help students graduate on time and achieve optimal learning outcomes, many institutions provide advising services supported by educational technologies. Accurate grade prediction is an integral part of these services such as degree planning…
Descriptors: Grade Prediction, Undergraduate Students, Prior Learning, Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Malkeet; Dunn, Hugh H. – AERA Online Paper Repository, 2020
This paper will demonstrate how we used state-level longitudinal data to model reading growth trajectories. Using data from large scale assessments that were vertically linked across grades in Hawaii, we utilized a multilevel regression framework to develop growth models to study students' reading performance trajectories during their elementary…
Descriptors: Reading Achievement, Elementary School Students, Student Characteristics, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Morsy, Sara; Karypis, George – International Educational Data Mining Society, 2019
Grade prediction for future courses not yet taken by students is important as it can help them and their advisers during the process of course selection as well as for designing personalized degree plans and modifying them based on their performance. One of the successful approaches for accurately predicting a student's grades in future courses is…
Descriptors: Grades (Scholastic), Models, Prediction, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mandalapu, Varun; Chen, Lujie Karen; Chen, Zhiyuan; Gong, Jiaqi – International Educational Data Mining Society, 2021
With the increasing adoption of Learning Management Systems (LMS) in colleges and universities, research in exploring the interaction data captured by these systems is promising in developing a better learning environment and improving teaching practice. Most of these research efforts focused on course-level variables to predict student…
Descriptors: Integrated Learning Systems, Interaction, Undergraduate Students, Minority Group Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Morsomme, Raphaël; Alferez, Sofia Vazquez – International Educational Data Mining Society, 2019
Liberal Arts programs are often characterized by their open curriculum. Yet, the abundance of courses available and the highly personalized curriculum are often overwhelming for students who must select courses relevant to their academic interests and suitable to their academic background. This paper presents the course recommender system that we…
Descriptors: Liberal Arts, Course Selection (Students), Courses, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chu, Wei; Pavlik, Philip I., Jr. – International Educational Data Mining Society, 2023
In adaptive learning systems, various models are employed to obtain the optimal learning schedule and review for a specific learner. Models of learning are used to estimate the learner's current recall probability by incorporating features or predictors proposed by psychological theory or empirically relevant to learners' performance. Logistic…
Descriptors: Reaction Time, Accuracy, Models, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karumbaiah, Shamya; Baker, Ryan S.; Shute, Valerie – International Educational Data Mining Society, 2018
Identifying struggling students in real-time provides a virtual learning environment with an opportunity to intervene meaningfully with supports aimed at improving student learning and engagement. In this paper, we present a detailed analysis of quit prediction modeling in students playing a learning game called Physics Playground. From the…
Descriptors: Predictor Variables, Academic Persistence, Educational Games, Play
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Tang, Steven; Gogel, Hannah; McBride, Elizabeth; Pardos, Zachary A. – International Educational Data Mining Society, 2015
Online adaptive tutoring systems are increasingly being used in classrooms as a way to provide guided learning for students. Such tutors have the potential to provide tailored feedback based on specific student needs and misunderstandings. Bayesian knowledge tracing (BKT) is used to model student knowledge when knowledge is assumed to be changing…
Descriptors: Intelligent Tutoring Systems, Difficulty Level, Bayesian Statistics, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya – International Educational Data Mining Society, 2016
The past few years has seen the rapid growth of data mining approaches for the analysis of data obtained from Massive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a student may achieve on a given grade-related assessment based on information, considered as prior performance or prior…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Ostrow, Korinn; Donnelly, Chistopher; Heffernan, Neil – International Educational Data Mining Society, 2015
As adaptive tutoring systems grow increasingly popular for the completion of classwork and homework, it is crucial to assess the manner in which students are scored within these platforms. The majority of systems, including ASSISTments, return the binary correctness of a student's first attempt at solving each problem. Yet for many teachers,…
Descriptors: Intelligent Tutoring Systems, Scoring, Testing, Credits
Wan, Hao; Beck, Joseph Barbosa – International Educational Data Mining Society, 2015
The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…
Descriptors: Skill Development, Problem Solving, Knowledge Level, Learning Processes
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  17