NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 34 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alicia M. Chen; Andrew Palacci; Natalia Vélez; Robert D. Hawkins; Samuel J. Gershman – Cognitive Science, 2024
How do teachers learn about what learners already know? How do learners aid teachers by providing them with information about their background knowledge and what they find confusing? We formalize this collaborative reasoning process using a hierarchical Bayesian model of pedagogy. We then evaluate this model in two online behavioral experiments (N…
Descriptors: Bayesian Statistics, Models, Teaching Methods, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Zinszer, Benjamin D.; Rolotti, Sebi V.; Li, Fan; Li, Ping – Cognitive Science, 2018
Infant language learners are faced with the difficult inductive problem of determining how new words map to novel or known objects in their environment. Bayesian inference models have been successful at using the sparse information available in natural child-directed speech to build candidate lexicons and infer speakers' referential intentions. We…
Descriptors: Bayesian Statistics, Vocabulary Development, Bilingualism, Monolingualism
Peer reviewed Peer reviewed
Direct linkDirect link
Kangasrääsiö, Antti; Jokinen, Jussi P. P.; Oulasvirta, Antti; Howes, Andrew; Kaski, Samuel – Cognitive Science, 2019
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional…
Descriptors: Inferences, Computation, Cognitive Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lloyd, Kevin; Sanborn, Adam; Leslie, David; Lewandowsky, Stephan – Cognitive Science, 2019
Algorithms for approximate Bayesian inference, such as those based on sampling (i.e., Monte Carlo methods), provide a natural source of models of how people may deal with uncertainty with limited cognitive resources. Here, we consider the idea that individual differences in working memory capacity (WMC) may be usefully modeled in terms of the…
Descriptors: Short Term Memory, Bayesian Statistics, Cognitive Ability, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Nicenboim, Bruno; Vasishth, Shravan; Engelmann, Felix; Suckow, Katja – Cognitive Science, 2018
Given the replication crisis in cognitive science, it is important to consider what researchers need to do in order to report results that are reliable. We consider three changes in current practice that have the potential to deliver more realistic and robust claims. First, the planned experiment should be divided into two stages, an exploratory…
Descriptors: Sentences, Case Studies, Cognitive Science, Psycholinguistics
Peer reviewed Peer reviewed
Direct linkDirect link
Paape, Dario; Avetisyan, Serine; Lago, Sol; Vasishth, Shravan – Cognitive Science, 2021
We present computational modeling results based on a self-paced reading study investigating number attraction effects in Eastern Armenian. We implement three novel computational models of agreement attraction in a Bayesian framework and compare their predictive fit to the data using k-fold cross-validation. We find that our data are better…
Descriptors: Computational Linguistics, Indo European Languages, Grammar, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
McAnally, Ken; Davey, Catherine; White, Daniel; Stimson, Murray; Mascaro, Steven; Korb, Kevin – Cognitive Science, 2018
Situation awareness is a key construct in human factors and arises from a process of situation assessment (SA). SA comprises the perception of information, its integration with existing knowledge, the search for new information, and the prediction of the future state of the world, including the consequences of planned actions. Causal models…
Descriptors: Bayesian Statistics, Models, Air Transportation, Flight Training
Peer reviewed Peer reviewed
Direct linkDirect link
Kastner, Itamar; Adriaans, Frans – Cognitive Science, 2018
Statistical learning is often taken to lie at the heart of many cognitive tasks, including the acquisition of language. One particular task in which probabilistic models have achieved considerable success is the segmentation of speech into words. However, these models have mostly been tested against English data, and as a result little is known…
Descriptors: Role, Phonemes, Contrastive Linguistics, English
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Dawn; Lu, Hongjing; Holyoak, Keith J. – Cognitive Science, 2017
A key property of relational representations is their "generativity": From partial descriptions of relations between entities, additional inferences can be drawn about other entities. A major theoretical challenge is to demonstrate how the capacity to make generative inferences could arise as a result of learning relations from…
Descriptors: Inferences, Abstract Reasoning, Learning Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Rafferty, Anna N.; Jansen, Rachel A.; Griffiths, Thomas L. – Cognitive Science, 2020
Online educational technologies offer opportunities for providing individualized feedback and detailed profiles of students' skills. Yet many technologies for mathematics education assess students based only on the correctness of either their final answers or responses to individual steps. In contrast, examining the choices students make for how…
Descriptors: Computer Assisted Testing, Mathematics Tests, Mathematics Skills, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Roettger, Timo B.; Franke, Michael – Cognitive Science, 2019
Intonation plays an integral role in comprehending spoken language. Listeners can rapidly integrate intonational information to predictively map a given pitch accent onto the speaker's likely referential intentions. We use mouse tracking to investigate two questions: (a) how listeners draw predictive inferences based on information from…
Descriptors: Cues, Intonation, Language Processing, Speech Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D. – Cognitive Science, 2018
Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference…
Descriptors: Classification, Conditioning, Inferences, Novelty (Stimulus Dimension)
Peer reviewed Peer reviewed
Direct linkDirect link
Frermann, Lea; Lapata, Mirella – Cognitive Science, 2016
Models of category learning have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this paper, we focus on categories acquired from natural language stimuli, that is, words (e.g., "chair" is a member of the furniture category). We present a Bayesian model that, unlike…
Descriptors: Classification, Bayesian Statistics, Models, Cognitive Science
Peer reviewed Peer reviewed
Direct linkDirect link
Gershman, Samuel J.; Pouncy, Hillard Thomas; Gweon, Hyowon – Cognitive Science, 2017
We routinely observe others' choices and use them to guide our own. Whose choices influence us more, and why? Prior work has focused on the effect of perceived similarity between two individuals (self and others), such as the degree of overlap in past choices or explicitly recognizable group affiliations. In the real world, however, any dyadic…
Descriptors: Social Influences, Social Cognition, Inferences, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3