NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 30 results Save | Export
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matthew J. Madison; Seungwon Chung; Junok Kim; Laine P. Bradshaw – Grantee Submission, 2023
Recent developments have enabled the modeling of longitudinal assessment data in a diagnostic classification model (DCM) framework. These longitudinal DCMs were developed to provide measures of student growth on a discrete scale in the form of attribute mastery transitions, thereby supporting categorical and criterion-referenced interpretations of…
Descriptors: Models, Cognitive Measurement, Diagnostic Tests, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Ruoxuan Li; Lijuan Wang – Grantee Submission, 2024
Causal-formative indicators are often used in social science research. To achieve identification in causal-formative indicator modeling, constraints need to be applied. A conventional method is to constrain the weight of a formative indicator to be 1. The selection of which indicator to have the fixed weight, however, may influence statistical…
Descriptors: Social Science Research, Causal Models, Formative Evaluation, Measurement
Zhenqiu Lu; Zhiyong Zhang – Grantee Submission, 2022
Bayesian approach is becoming increasingly important as it provides many advantages in dealing with complex data. However, there is no well-defined model selection criterion or index in a Bayesian context. To address the challenges, new indices are needed. The goal of this study is to propose new model selection indices and to investigate their…
Descriptors: Models, Goodness of Fit, Bayesian Statistics, Simulation
Dragos Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2023
Reading comprehension is essential for both knowledge acquisition and memory reinforcement. Automated modeling of the comprehension process provides insights into the efficacy of specific texts as learning tools. This paper introduces an improved version of the Automated Model of Comprehension, version 3.0 (AMoC v3.0). AMoC v3.0 is based on two…
Descriptors: Reading Comprehension, Models, Concept Mapping, Graphs
Egamaria Alacam; Craig K. Enders; Han Du; Brian T. Keller – Grantee Submission, 2023
Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score…
Descriptors: Regression (Statistics), Scores, Psychometrics, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Natalie R. Charamut; Sarah J. Racz; Mo Wang; Andres De Los Reyes – Grantee Submission, 2022
Accurately assessing youth mental health involves obtaining reports from multiple informants who typically display low levels of correspondence. This low correspondence may reflect "situational specificity." That is, youth vary as to where they display mental health concerns and informants vary as to where and from what perspective they…
Descriptors: Youth, Parents, Mental Health, Researchers
Eglington, Luke G.; Pavlik, Philip I., Jr. – Grantee Submission, 2022
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Jorge Salas – Grantee Submission, 2024
Despite the growing interest in incorporating response time data into item response models, there has been a lack of research investigating how the effect of speed on the probability of a correct response varies across different groups (e.g., experimental conditions) for various items (i.e., differential response time item analysis). Furthermore,…
Descriptors: Item Response Theory, Reaction Time, Models, Accuracy
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Cho, April E.; Wang, Chun; Zhang, Xue; Xu, Gongjun – Grantee Submission, 2020
Multidimensional Item Response Theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that…
Descriptors: Item Response Theory, Mathematics, Statistical Inference, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Robert-Mihai Botarleanu; Micah Watanabe; Mihai Dascalu; Scott A. Crossley; Danielle S. McNamara – Grantee Submission, 2023
Age of Acquisition (AoA) scores approximate the age at which a language speaker fully understands a word's semantic meaning and represent a quantitative measure of the relative difficulty of words in a language. AoA word lists exist across various languages, with English having the most complete lists that capture the largest percentage of the…
Descriptors: Multilingualism, English (Second Language), Second Language Learning, Second Language Instruction
Previous Page | Next Page ยป
Pages: 1  |  2