Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Models | 9 |
Statistical Inference | 9 |
Bayesian Statistics | 5 |
Computation | 3 |
Identification | 3 |
Item Response Theory | 3 |
Research Design | 3 |
Causal Models | 2 |
Data Analysis | 2 |
Monte Carlo Methods | 2 |
Multivariate Analysis | 2 |
More ▼ |
Source
Grantee Submission | 9 |
Author
Andrew Gelman | 1 |
Avi Feller | 1 |
Bonifay, Wes | 1 |
Cho, April E. | 1 |
David B. Dunson | 1 |
David Bruns-Smith | 1 |
Depaoli, Sarah | 1 |
Elena A. Erosheva | 1 |
Elizabeth L. Ogburn | 1 |
Gongjun Xu | 1 |
Hedges, Larry V. | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Journal Articles | 2 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Ting Ye; Ted Westling; Lindsay Page; Luke Keele – Grantee Submission, 2024
The clustered observational study (COS) design is the observational study counterpart to the clustered randomized trial. In a COS, a treatment is assigned to intact groups, and all units within the group are exposed to the treatment. However, the treatment is non-randomly assigned. COSs are common in both education and health services research. In…
Descriptors: Nonparametric Statistics, Identification, Causal Models, Multivariate Analysis
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Andrew Gelman; Matthijs Vákár – Grantee Submission, 2021
It is not always clear how to adjust for control data in causal inference, balancing the goals of reducing bias and variance. We show how, in a setting with repeated experiments, Bayesian hierarchical modeling yields an adaptive procedure that uses the data to determine how much adjustment to perform. The result is a novel analysis with increased…
Descriptors: Bayesian Statistics, Statistical Analysis, Efficiency, Statistical Inference

Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
Cho, April E.; Wang, Chun; Zhang, Xue; Xu, Gongjun – Grantee Submission, 2020
Multidimensional Item Response Theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that…
Descriptors: Item Response Theory, Mathematics, Statistical Inference, Maximum Likelihood Statistics
Bonifay, Wes; Depaoli, Sarah – Grantee Submission, 2021
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard good-ness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Models, Measurement Techniques, Item Response Theory
Natesan, Prathiba; Hedges, Larry V. – Grantee Submission, 2016
Although immediacy is one of the necessary criteria to show strong evidence of a causal relation in SCDs, no inferential statistical tool is currently used to demonstrate it. We propose a Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. Unlike visual analysis that considers only 3-5 observations in…
Descriptors: Bayesian Statistics, Statistical Inference, Research Design, Models