Publication Date
In 2025 | 0 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 13 |
Descriptor
Learning Processes | 13 |
Models | 13 |
Prediction | 6 |
Correlation | 4 |
Electronic Learning | 4 |
Academic Achievement | 3 |
Learning Analytics | 3 |
Learning Management Systems | 3 |
Networks | 3 |
Blended Learning | 2 |
College Students | 2 |
More ▼ |
Source
IEEE Transactions on Learning… | 13 |
Author
Alvarez, Ronald Perez | 1 |
Behzad Mirzababaei | 1 |
Bo Jiang | 1 |
Bull, Susan | 1 |
Chen, Jian | 1 |
Chen, Penghe | 1 |
Dai, Qin | 1 |
Fabregat, Ramon | 1 |
Fan, Chunlong | 1 |
Feng Hsu Wang | 1 |
Florian, Beatriz | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 11 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Adult Education | 1 |
Audience
Location
Netherlands | 1 |
Spain | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Lu, Yu; Chen, Penghe; Pian, Yang; Zheng, Vincent W. – IEEE Transactions on Learning Technologies, 2022
In this article, we advocate for and propose a novel concept map driven knowledge tracing (CMKT) model, which utilizes educational concept map for learner modeling. This article particularly addresses the issue of learner data sparseness caused by the unwillingness to practice and irregular learning behaviors on the learner side. CMKT considers…
Descriptors: Concept Mapping, Learning Processes, Prediction, Models
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Mao, Shun; Zhan, Jieyu; Wang, Yizhao; Jiang, Yuncheng – IEEE Transactions on Learning Technologies, 2023
For offering adaptive learning to learners in intelligent tutoring systems, one of the fundamental tasks is knowledge tracing (KT), which aims to assess learners' learning states and make prediction for future performance. However, there are two crucial issues in deep learning-based KT models. First, the knowledge concepts are used to predict…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Prediction, Prior Learning
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
Liu, Fang; Zhao, Liang; Zhao, Jiayi; Dai, Qin; Fan, Chunlong; Shen, Jun – IEEE Transactions on Learning Technologies, 2022
Educational process mining is now a promising method to provide decision-support information for the teaching-learning process via finding useful educational guidance from the event logs recorded in the learning management system. Existing studies mainly focus on mining students' problem-solving skills or behavior patterns and intervening in…
Descriptors: Data Use, Learning Management Systems, Problem Solving, Learning Processes
Sonja Kleter; Uwe Matzat; Rianne Conijn – IEEE Transactions on Learning Technologies, 2024
Much of learning analytics research has focused on factors influencing model generalizability of predictive models for academic performance. The degree of model generalizability across courses may depend on aspects, such as the similarity of the course setup, course material, the student cohort, or the teacher. Which of these contextual factors…
Descriptors: Prediction, Models, Academic Achievement, Learning Analytics
Alvarez, Ronald Perez; Jivet, Ioana; Perez-Sanagustin, Mar; Scheffel, Maren; Verbert, Katrien – IEEE Transactions on Learning Technologies, 2022
Self-regulated learning (SRL) is a crucial higher-order skill required by learners of the 21st century, who will need to become lifelong learners to adapt to the continually changing environments. Literature provides examples of tools for scaffolding SRL in online environments. In this article, we provide the state-of-the-art concerning tools that…
Descriptors: Metacognition, Teaching Methods, Research Reports, Goal Orientation
Wan, Pengfei; Wang, Xiaoming; Lin, Yaguang; Pang, Guangyao – IEEE Transactions on Learning Technologies, 2021
Learners' autonomous learning is at the heart of modern education, and the convenient network brings new opportunities for it. We notice that learners mainly use the combination of online and offline learning methods to complete the entire autonomous learning process, but most of the existing models cannot effectively describe the complex process…
Descriptors: Independent Study, Personal Autonomy, Learning Processes, Electronic Learning
Zhou, Xiaokang; Chen, Jian; Wu, Bo; Jin, Qun – IEEE Transactions on Learning Technologies, 2014
With the high development of social networks, collaborations in a socialized web-based learning environment has become increasing important, which means people can learn through interactions and collaborations in communities across social networks. In this study, in order to support the enhanced collaborative learning, two important factors, user…
Descriptors: Cooperative Learning, Social Networks, Behavior Patterns, Correlation
Mejia, Carolina; Florian, Beatriz; Vatrapu, Ravi; Bull, Susan; Gomez, Sergio; Fabregat, Ramon – IEEE Transactions on Learning Technologies, 2017
Existing tools aim to detect university students with early diagnosis of dyslexia or reading difficulties, but there are not developed tools that let those students better understand some aspects of their difficulties. In this paper, a dashboard for visualizing and inspecting early detected reading difficulties and their characteristics, called…
Descriptors: Clinical Diagnosis, Dyslexia, Visualization, Metacognition
Tempelaar, Dirk T.; Rienties, Bart; Nguyen, Quan – IEEE Transactions on Learning Technologies, 2017
Studies in the field of learning analytics (LA) have shown students' demographics and learning management system (LMS) data to be effective identifiers of "at risk" performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to the inability to explain why students…
Descriptors: Student Behavior, Integrated Learning Systems, Personality, Educational Research