Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 13 |
| Since 2017 (last 10 years) | 17 |
| Since 2007 (last 20 years) | 19 |
Descriptor
| Models | 19 |
| Prediction | 19 |
| Learning Analytics | 6 |
| Artificial Intelligence | 5 |
| Data Analysis | 5 |
| Scores | 5 |
| Student Behavior | 5 |
| Academic Achievement | 4 |
| Foreign Countries | 4 |
| Teaching Methods | 4 |
| Accuracy | 3 |
| More ▼ | |
Source
| Interactive Learning… | 19 |
Author
Publication Type
| Journal Articles | 19 |
| Reports - Research | 14 |
| Reports - Descriptive | 3 |
| Information Analyses | 1 |
| Reports - Evaluative | 1 |
Education Level
| Higher Education | 5 |
| Postsecondary Education | 5 |
| Secondary Education | 5 |
| Junior High Schools | 3 |
| Middle Schools | 3 |
| High Schools | 2 |
| Early Childhood Education | 1 |
| Elementary Education | 1 |
| Grade 10 | 1 |
| Grade 9 | 1 |
| Preschool Education | 1 |
| More ▼ | |
Audience
Location
| China | 1 |
| Spain | 1 |
| Taiwan | 1 |
| Taiwan (Taipei) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Xia, Xiaona – Interactive Learning Environments, 2023
The research of multi-category learning behaviors is a hot issue in interactive learning environment, and there are many challenges in data statistics and relationship modeling. We select the massive learning behaviors data of multiple periods and courses and study the decision application of regression analysis. First, based on the definition of…
Descriptors: Learning Analytics, Decision Making, Regression (Statistics), Bayesian Statistics
Tan, Hongye; Wang, Chong; Duan, Qinglong; Lu, Yu; Zhang, Hu; Li, Ru – Interactive Learning Environments, 2023
Automatic short answer grading (ASAG) is a challenging task that aims to predict a score for a given student response. Previous works on ASAG mainly use nonneural or neural methods. However, the former depends on handcrafted features and is limited by its inflexibility and high cost, and the latter ignores global word cooccurrence in a corpus and…
Descriptors: Automation, Grading, Computer Assisted Testing, Graphs
Zhou, Yizhuo; Zhao, Jin; Zhang, Jianjun – Interactive Learning Environments, 2023
On e-learning platforms, most e-learners didn't complete the course successfully. It means that reducing dropout is a critical problem for the sustainability of e-learning. This paper aims to establish a predictive model to describe e-learners' dropout behavior, which can help the commercial e-learning platforms to make appropriate interventions…
Descriptors: Electronic Learning, Prediction, Dropouts, Student Behavior
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
MOOC Student Dropout Prediction Model Based on Learning Behavior Features and Parameter Optimization
Jin, Cong – Interactive Learning Environments, 2023
Since the advent of massive open online courses (MOOC), it has been the focus of educators and learners around the world, however the high dropout rate of MOOC has had a serious negative impact on its popularity and promotion. How to effectively predict students' dropout status in MOOC for early intervention has become a hot topic in MOOC…
Descriptors: MOOCs, Potential Dropouts, Prediction, Models
Guiqin Liang; Chunsong Jiang; Qiuzhe Ping; Xinyi Jiang – Interactive Learning Environments, 2024
With long-term impact of COVID-19 on education, online interactive live courses have been an effective method to keep learning and teaching from being interrupted, attracting more and more attention due to their synchronous and real-time interaction. However, there is no suitable method for predicting academic performance for students…
Descriptors: Academic Achievement, Prediction, Engineering Education, Online Courses
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Gontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Gkontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze, and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Prediction of Students' Early Dropout Based on Their Interaction Logs in Online Learning Environment
Mubarak, Ahmed A.; Cao, Han; Zhang, Weizhen – Interactive Learning Environments, 2022
Online learning has become more popular in higher education since it adds convenience and flexibility to students' schedule. But, it has faced difficulties in the retention of the continuity of students and ensure continual growth in course. Dropout is a concerning factor in online course continuity. Therefore, it has sparked great interest among…
Descriptors: Prediction, Dropouts, Interaction, Learning Analytics
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Poitras, Eric; Butcher, Kirsten R.; Orr, Matthew; Hudson, Michelle A.; Larson, Madlyn – Interactive Learning Environments, 2022
This study mined student interactions with visual representations as a means to automate assessment of learning in a complex, inquiry-based learning environment. Log trace data of 143 middle school students' interactions with an interactive map in Research Quest (an inquiry-based, online learning environment) were analyzed. Students used the…
Descriptors: Middle School Students, Electronic Learning, Maps, Science Instruction
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Paquette, Luc; Baker, Ryan S. – Interactive Learning Environments, 2019
Learning analytics research has used both knowledge engineering and machine learning methods to model student behaviors within the context of digital learning environments. In this paper, we compare these two approaches, as well as a hybrid approach combining the two types of methods. We illustrate the strengths of each approach in the context of…
Descriptors: Comparative Analysis, Student Behavior, Models, Case Studies
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
