Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 68 |
Since 2016 (last 10 years) | 178 |
Since 2006 (last 20 years) | 220 |
Descriptor
Models | 220 |
Prediction | 96 |
Intelligent Tutoring Systems | 69 |
Data Analysis | 58 |
Artificial Intelligence | 50 |
Accuracy | 43 |
Classification | 43 |
Online Courses | 41 |
College Students | 34 |
Knowledge Level | 34 |
Comparative Analysis | 33 |
More ▼ |
Source
International Educational… | 220 |
Author
Baker, Ryan S. | 13 |
Chi, Min | 8 |
Barnes, Tiffany | 7 |
Koedinger, Kenneth R. | 7 |
D'Mello, Sidney K. | 6 |
Heffernan, Neil | 6 |
Heffernan, Neil T. | 6 |
Hutt, Stephen | 6 |
Pardos, Zachary A. | 6 |
Gal, Kobi | 5 |
Käser, Tanja | 5 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 211 |
Reports - Research | 175 |
Reports - Descriptive | 24 |
Reports - Evaluative | 14 |
Collected Works - Proceedings | 7 |
Tests/Questionnaires | 1 |
Education Level
Audience
Location
Florida | 5 |
Pennsylvania | 4 |
Brazil | 3 |
Virginia | 3 |
Australia | 2 |
California (Stanford) | 2 |
Canada | 2 |
China | 2 |
Europe | 2 |
North Carolina | 2 |
South Korea | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Test of English for… | 3 |
Flesch Kincaid Grade Level… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Prihar, Ethan; Vanacore, Kirk; Sales, Adam; Heffernan, Neil – International Educational Data Mining Society, 2023
There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized experiments that evaluate problem-level interventions in…
Descriptors: Electronic Learning, Intervention, Instructional Effectiveness, Data Collection
Kim, Yunsung; Sreechan; Piech, Chris; Thille, Candace – International Educational Data Mining Society, 2023
Dynamic Item Response Models extend the standard Item Response Theory (IRT) to capture temporal dynamics in learner ability. While these models have the potential to allow instructional systems to actively monitor the evolution of learner proficiency in real time, existing dynamic item response models rely on expensive inference algorithms that…
Descriptors: Item Response Theory, Accuracy, Inferences, Algorithms
Hoq, Muntasir; Brusilovsky, Peter; Akram, Bita – International Educational Data Mining Society, 2023
Prediction of student performance in introductory programming courses can assist struggling students and improve their persistence. On the other hand, it is important for the prediction to be transparent for the instructor and students to effectively utilize the results of this prediction. Explainable Machine Learning models can effectively help…
Descriptors: Academic Achievement, Prediction, Models, Introductory Courses
Swamy, Vinitra; Radmehr, Bahar; Krco, Natasa; Marras, Mirko; Käser, Tanja – International Educational Data Mining Society, 2022
Neural networks are ubiquitous in applied machine learning for education. Their pervasive success in predictive performance comes alongside a severe weakness, the lack of explainability of their decisions, especially relevant in humancentric fields. We implement five state-of-the-art methodologies for explaining black-box machine learning models…
Descriptors: Artificial Intelligence, Academic Achievement, Grade Prediction, MOOCs
Cai, Zhiqiang; Marquart, Cody; Shaffer, David W. – International Educational Data Mining Society, 2022
Regular expression (regex) coding has advantages for text analysis. Humans are often able to quickly construct intelligible coding rules with high precision. That is, researchers can identify words and word patterns that correctly classify examples of a particular concept. And, it is often easy to identify false positives and improve the regex…
Descriptors: Coding, Classification, Artificial Intelligence, Engineering Education
Karumbaiah, Shamya; Zhang, Jiayi; Baker, Ryan S.; Scruggs, Richard; Cade, Whitney; Clements, Margaret; Lin, Shuqiong – International Educational Data Mining Society, 2022
Considerable amount of research in educational data mining has focused on developing efficient algorithms for Knowledge Tracing (KT). However, in practice, many real-world learning systems used at scale struggle to implement KT capabilities, especially if they weren't originally designed for it. One key challenge is to accurately label existing…
Descriptors: Artificial Intelligence, Middle School Students, Models, Concept Mapping
Kim, Minsam; Shim, Yugeun; Lee, Seewoo; Loh, Hyunbin; Park, Juneyoung – International Educational Data Mining Society, 2021
Knowledge Tracing (KT) is a task to model students' knowledge based on their coursework interactions within an Intelligent Tutoring System (ITS). Recently, Deep Neural Networks (DNN) showed superb performance over classical methods on multiple dataset benchmarks. While most Deep Learning based Knowledge Tracing (DLKT) models are optimized for…
Descriptors: Models, Artificial Intelligence, Knowledge Level, Evaluation Methods
Qiu, Wei; Supraja, S.; Khong, Andy W. H. – International Educational Data Mining Society, 2022
Predicting student performance in an academic institution is important for detecting at-risk students and administering early-intervention strategies. We propose a new grade prediction model that considers three factors: temporal dynamics of prior courses across previous semesters, short-term performance consistency, and relative performance…
Descriptors: Academic Achievement, Prediction, Grades (Scholastic), Models
Delianidi, Marina; Diamantaras, Konstantinos; Chrysogonidis, George; Nikiforidis, Vasileios – International Educational Data Mining Society, 2021
We address the problem of predicting the correctness of the student's response on the next exam question based on their previous interactions in the course of their learning and evaluation process. We model the student performance as a dynamic problem and compare the two major classes of dynamic neural architectures for its solution, namely the…
Descriptors: Grade Prediction, Models, Student Experience, Cognitive Processes
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2021
Predicting student problem-solving strategies is a complex problem but one that can significantly impact automated instruction systems since they can adapt or personalize the system to suit the learner. While for small datasets, learning experts may be able to manually analyze data to infer student strategies, for large datasets, this approach is…
Descriptors: Prediction, Problem Solving, Intelligent Tutoring Systems, Learning Strategies
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Philip I. Pavlik; Luke G. Eglington – International Educational Data Mining Society, 2023
This paper presents a tool for creating student models in logistic regression. Creating student models has typically been done by expert selection of the appropriate terms, beginning with models as simple as IRT or AFM but more recently with highly complex models like BestLR. While alternative methods exist to select the appropriate predictors for…
Descriptors: Students, Models, Regression (Statistics), Alternative Assessment
Levin, Nathan; Baker, Ryan S.; Nasiar, Nidhi; Fancsali, Stephen; Hutt, Stephen – International Educational Data Mining Society, 2022
Research into "gaming the system" behavior in intelligent tutoring systems (ITS) has been around for almost two decades, and detection has been developed for many ITSs. Machine learning models can detect this behavior in both real-time and in historical data. However, intelligent tutoring system designs often change over time, in terms…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Cheating
Piao, Guangyuan – International Educational Data Mining Society, 2021
Massive Open Online Courses (MOOCs) which enable large-scale open online learning for massive users have been playing an important role in modern education for both students as well as professionals. To keep users' interest in MOOCs, recommender systems have been studied and deployed to recommend courses or videos that a user might be interested…
Descriptors: Concept Formation, Online Courses, Navigation (Information Systems), Learning Analytics
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies