Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 18 |
Descriptor
Models | 18 |
Intelligent Tutoring Systems | 12 |
Data Analysis | 11 |
Knowledge Level | 11 |
Performance | 11 |
Prediction | 10 |
Online Courses | 8 |
Artificial Intelligence | 7 |
College Students | 7 |
Foreign Countries | 7 |
Problem Solving | 7 |
More ▼ |
Source
International Educational… | 18 |
Author
Publication Type
Speeches/Meeting Papers | 13 |
Reports - Research | 10 |
Collected Works - Proceedings | 5 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 9 |
Postsecondary Education | 9 |
Middle Schools | 4 |
Secondary Education | 4 |
High Schools | 3 |
Junior High Schools | 3 |
Elementary Education | 2 |
Adult Education | 1 |
Elementary Secondary Education | 1 |
Grade 5 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Location
Brazil | 3 |
Uruguay | 2 |
Afghanistan | 1 |
China | 1 |
Germany | 1 |
Illinois (Chicago) | 1 |
Italy | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Doan, Thanh-Nam; Sahebi, Shaghayegh – International Educational Data Mining Society, 2019
One of the essential problems, in educational data mining, is to predict students' performance on future learning materials, such as problems, assignments, and quizzes. Pioneer algorithms for predicting student performance mostly rely on two sources of information: students' past performance, and learning materials' domain knowledge model. The…
Descriptors: Data Analysis, Performance Factors, Prediction, Models
Jiménez, Haydée G.; Casanova, Marco A.; Finamore, Anna Carolina; Simões, Gonçalo – International Educational Data Mining Society, 2021
Sentiment Analysis is a field of Natural Language Processing which aims at classifying the author's sentiment in text. This paper first describes a sentiment analysis model for students' comments about professor performance. The model achieved impressive results for comments collected from student surveys conducted at a private university in…
Descriptors: Natural Language Processing, Data Analysis, Classification, Student Surveys
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Montero, Shirly; Arora, Akshit; Kelly, Sean; Milne, Brent; Mozer, Michael – International Educational Data Mining Society, 2018
Personalized learning environments requiring the elicitation of a student's knowledge state have inspired researchers to propose distinct models to understand that knowledge state. Recently, the spotlight has shone on comparisons between traditional, interpretable models such as Bayesian Knowledge Tracing (BKT) and complex, opaque neural network…
Descriptors: Artificial Intelligence, Individualized Instruction, Knowledge Level, Bayesian Statistics
Mandalapu, Varun; Chen, Lujie Karen; Chen, Zhiyuan; Gong, Jiaqi – International Educational Data Mining Society, 2021
With the increasing adoption of Learning Management Systems (LMS) in colleges and universities, research in exploring the interaction data captured by these systems is promising in developing a better learning environment and improving teaching practice. Most of these research efforts focused on course-level variables to predict student…
Descriptors: Integrated Learning Systems, Interaction, Undergraduate Students, Minority Group Students
Klingler, Severin; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2015
Modeling student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for modeling the acquisition of knowledge is Bayesian Knowledge Tracing (BKT). Various extensions to the original BKT model have been proposed, among them two novel models that unify BKT and Item Response Theory (IRT). Latent Factor Knowledge…
Descriptors: Intelligent Tutoring Systems, Knowledge Level, Item Response Theory, Prediction
Ai, Fangzhe; Chen, Yishuai; Guo, Yuchun; Zhao, Yongxiang; Wang, Zhenzhu; Fu, Guowei; Wang, Guangyan – International Educational Data Mining Society, 2019
Personalized education systems recommend learning contents to students based on their capacity to accelerate their learning. This paper proposes a personalized exercise recommendation system for online self-directed learning. We first improve the performance of knowledge tracing models. Existing deep knowledge tracing models, such as Dynamic…
Descriptors: Online Courses, Independent Study, Grade 5, Elementary School Students
Ashenafi, Michael Mogessie; Ronchetti, Marco; Riccardi, Giuseppe – International Educational Data Mining Society, 2016
Predicting overall student performance and monitoring progress have attracted more attention in the past five years than before. Demographic data, high school grades and test result constitute much of the data used for building prediction models. This study demonstrates how data from a peer-assessment environment can be used to build student…
Descriptors: Peer Evaluation, Progress Monitoring, Performance, Undergraduate Students
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Descriptors: Factor Analysis, Regression (Statistics), Knowledge Level, Markov Processes
Chen, Yang; Wuillemin, Pierre-Henr; Labat, Jean-Marc – International Educational Data Mining Society, 2015
Estimating the prerequisite structure of skills is a crucial issue in domain modeling. Students usually learn skills in sequence since the preliminary skills need to be learned prior to the complex skills. The prerequisite relations between skills underlie the design of learning sequence and adaptation strategies for tutoring systems. The…
Descriptors: Skills, Data Analysis, Students, Performance
Van Inwegen, Eric G.; Adjei, Seth A.; Wang, Yan; Heffernan, Neil T. – International Educational Data Mining Society, 2015
User modelling algorithms such as Performance Factors Analysis and Knowledge Tracing seek to determine a student's knowledge state by analyzing (among other features) right and wrong answers. Anyone who has ever graded an assignment by hand knows that some answers are "more wrong" than others; i.e. they display less of an understanding…
Descriptors: Knowledge Level, Performance Factors, Error Patterns, Mathematics
Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya – International Educational Data Mining Society, 2016
The past few years has seen the rapid growth of data mining approaches for the analysis of data obtained from Massive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a student may achieve on a given grade-related assessment based on information, considered as prior performance or prior…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Wan, Hao; Beck, Joseph Barbosa – International Educational Data Mining Society, 2015
The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…
Descriptors: Skill Development, Problem Solving, Knowledge Level, Learning Processes
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Previous Page | Next Page »
Pages: 1 | 2