Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 11 |
Descriptor
Source
International Educational… | 11 |
Author
Publication Type
Speeches/Meeting Papers | 9 |
Reports - Research | 8 |
Collected Works - Proceedings | 2 |
Reports - Descriptive | 1 |
Education Level
Secondary Education | 4 |
High Schools | 3 |
Junior High Schools | 3 |
Middle Schools | 3 |
Elementary Education | 2 |
Higher Education | 2 |
Postsecondary Education | 2 |
Grade 8 | 1 |
Audience
Location
Afghanistan | 1 |
Brazil | 1 |
Illinois (Chicago) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Agarwal, Deepak; Baker, Ryan S.; Muraleedharan, Anupama – International Educational Data Mining Society, 2020
There has been considerable interest in techniques for modelling student learning across practice problems to drive real-time adaptive learning, with particular focus on variants of the classic Bayesian Knowledge Tracing (BKT) model proposed by Corbett & Anderson, 1995. Over time researches have proposed many variants of BKT with…
Descriptors: Intelligent Tutoring Systems, Models, Skill Development, Mastery Learning
Ou, Lu; Hofman, Abe D.; Simmering, Vanessa R.; Bechger, Timo; Maris, Gunter; van der Maas, Han L. J. – International Educational Data Mining Society, 2019
In this study, we fitted a mixed-effects nonlinear continuous-time mutualism model of skill development proposed by van der Maas et al. (2006) to naturally collected irregularly spaced time series data from an online adaptive practice system for mathematics called Math Garden. Results showed that the mutualism model provided a better fit to the…
Descriptors: Mathematics Skills, Skill Development, Time, Models
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Choffin, Benoît; Popineau, Fabrice; Bourda, Yolaine; Vie, Jill-Jênn – International Educational Data Mining Society, 2019
Spaced repetition is among the most studied learning strategies in the cognitive science literature. It consists in temporally distributing exposure to an information so as to improve long-term memorization. Providing students with an adaptive and personalized distributed practice schedule would benefit more than just a generic scheduler. However,…
Descriptors: Intervals, Scheduling, Repetition, Memorization
Falakmasir, Mohammad; Yudelson, Michael; Ritter, Steve; Koedinger, Ken – International Educational Data Mining Society, 2015
Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student's latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is…
Descriptors: Bayesian Statistics, Models, Skill Development, Intelligent Tutoring Systems
Streeter, Matthew – International Educational Data Mining Society, 2015
We show that student learning can be accurately modeled using a mixture of learning curves, each of which specifies error probability as a function of time. This approach generalizes Knowledge Tracing [7], which can be viewed as a mixture model in which the learning curves are step functions. We show that this generality yields order-of-magnitude…
Descriptors: Probability, Error Patterns, Learning Processes, Models
Wan, Hao; Beck, Joseph Barbosa – International Educational Data Mining Society, 2015
The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…
Descriptors: Skill Development, Problem Solving, Knowledge Level, Learning Processes
González-Brenes, José P.; Huang, Yun – International Educational Data Mining Society, 2015
Classification evaluation metrics are often used to evaluate adaptive tutoring systems-- programs that teach and adapt to humans. Unfortunately, it is not clear how intuitive these metrics are for practitioners with little machine learning background. Moreover, our experiments suggest that existing convention for evaluating tutoring systems may…
Descriptors: Intelligent Tutoring Systems, Evaluation Methods, Program Evaluation, Student Behavior
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis