NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hecht, Martin; Voelkle, Manuel C. – International Journal of Behavioral Development, 2021
The analysis of cross-lagged relationships is a popular approach in prevention research to explore the dynamics between constructs over time. However, a limitation of commonly used cross-lagged models is the requirement of equally spaced measurement occasions that prevents the usage of flexible longitudinal designs and complicates cross-study…
Descriptors: Models, Longitudinal Studies, Prevention, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Klugkist, Irene; van Wesel, Floryt; Bullens, Jessie – International Journal of Behavioral Development, 2011
Null hypothesis testing (NHT) is the most commonly used tool in empirical psychological research even though it has several known limitations. It is argued that since the hypotheses evaluated with NHT do not reflect the research-question or theory of the researchers, conclusions from NHT must be formulated with great modesty, that is, they cannot…
Descriptors: Psychological Studies, Hypothesis Testing, Researchers, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J. – International Journal of Behavioral Development, 2007
Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…
Descriptors: Computation, Bayesian Statistics, Statistical Analysis, Longitudinal Studies