Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Learning Processes | 7 |
Models | 7 |
Bayesian Statistics | 5 |
Cognitive Processes | 3 |
Intelligent Tutoring Systems | 3 |
Prediction | 3 |
Academic Achievement | 2 |
Data Analysis | 2 |
Evaluation Methods | 2 |
Factor Analysis | 2 |
Intervention | 2 |
More ▼ |
Source
Journal of Educational Data… | 7 |
Author
Almeda, Ma. Victoria | 1 |
Baker, Ryan S. | 1 |
Bolsinova, Maria | 1 |
Brandon Zhang | 1 |
Chi, Min | 1 |
Delianidi, Marina | 1 |
Deonovic, Benjamin E. | 1 |
Diamantaras, Konstantinos | 1 |
Galyardt, April | 1 |
Goldin, Ilya | 1 |
Heffernan, Cristina | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Numerical/Quantitative Data | 1 |
Education Level
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Netherlands | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Delianidi, Marina; Diamantaras, Konstantinos – Journal of Educational Data Mining, 2023
Student performance is affected by their knowledge which changes dynamically over time. Therefore, employing recurrent neural networks (RNN), which are known to be very good in dynamic time series prediction, can be a suitable approach for student performance prediction. We propose such a neural network architecture containing two modules: (i) a…
Descriptors: Academic Achievement, Prediction, Cognitive Measurement, Bayesian Statistics
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Savi, Alexander O.; Deonovic, Benjamin E.; Bolsinova, Maria; van der Maas, Han L. J.; Maris, Gunter K. J. – Journal of Educational Data Mining, 2021
In learning, errors are ubiquitous and inevitable. As these errors may signal otherwise latent cognitive processes, tutors--and students alike--can greatly benefit from the information they provide. In this paper, we introduce and evaluate the Systematic Error Tracing (SET) model that identifies the possible causes of systematically observed…
Descriptors: Learning Processes, Cognitive Processes, Error Patterns, Models
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Kai, Shimin; Almeda, Ma. Victoria; Baker, Ryan S.; Heffernan, Cristina; Heffernan, Neil – Journal of Educational Data Mining, 2018
Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly beneficial for learning.…
Descriptors: Decision Making, Models, Intervention, Computer Assisted Instruction