NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Wang, Chun; Nydick, Steven W. – Journal of Educational and Behavioral Statistics, 2020
Recent work on measuring growth with categorical outcome variables has combined the item response theory (IRT) measurement model with the latent growth curve model and extended the assessment of growth to multidimensional IRT models and higher order IRT models. However, there is a lack of synthetic studies that clearly evaluate the strength and…
Descriptors: Item Response Theory, Longitudinal Studies, Comparative Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Flynt, Abby; Dean, Nema – Journal of Educational and Behavioral Statistics, 2016
Cluster analysis is a set of statistical methods for discovering new group/class structure when exploring data sets. This article reviews the following popular libraries/commands in the R software language for applying different types of cluster analysis: from the stats library, the kmeans, and hclust functions; the mclust library; the poLCA…
Descriptors: Multivariate Analysis, Computer Software, Comparative Analysis, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M.; Yang, Ji Seung; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2016
We present types of constructs, individual- and cluster-level, and their confirmatory factor analytic validation models when data are from individuals nested within clusters. When a construct is theoretically individual level, spurious construct-irrelevant dependency in the data may appear to signal cluster-level dependency; in such cases,…
Descriptors: Multivariate Analysis, Factor Analysis, Validity, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Magnus, Brooke E.; Thissen, David – Journal of Educational and Behavioral Statistics, 2017
Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…
Descriptors: Item Response Theory, Models, Multivariate Analysis, Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew; Park, Trevor – Journal of Educational and Behavioral Statistics, 2017
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Descriptors: Bayesian Statistics, Multivariate Analysis, Item Response Theory, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Tutz, Gerhard; Berger, Moritz – Journal of Educational and Behavioral Statistics, 2016
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Descriptors: Response Style (Tests), Rating Scales, Data Interpretation, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Bianconcini, Silvia; Cagnone, Silvia – Journal of Educational and Behavioral Statistics, 2012
The evaluation of the formative process in the University system has been assuming an ever increasing importance in the European countries. Within this context, the analysis of student performance and capabilities plays a fundamental role. In this work, the authors propose a multivariate latent growth model for studying the performances of a…
Descriptors: Academic Achievement, College Students, Multivariate Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Browne, William; Goldstein, Harvey – Journal of Educational and Behavioral Statistics, 2010
In this article, we discuss the effect of removing the independence assumptions between the residuals in two-level random effect models. We first consider removing the independence between the Level 2 residuals and instead assume that the vector of all residuals at the cluster level follows a general multivariate normal distribution. We…
Descriptors: Computation, Sampling, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Yongyun; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2010
In organizational studies involving multiple levels, the association between a covariate and an outcome often differs at different levels of aggregation, giving rise to widespread interest in "contextual effects models." Such models partition the regression into within- and between-cluster components. The conventional approach uses each…
Descriptors: Academic Achievement, National Surveys, Computation, Inferences
Peer reviewed Peer reviewed
Timm, Neil H. – Journal of Educational and Behavioral Statistics, 2002
Shows how to test the hypothesis that a nonnested model fits a set of predictors when modeling multiple effect sizes in meta-analysis. Illustrates the procedure using data from previous studies of the effectiveness of coaching on performance on the Scholastic Aptitude Test. (SLD)
Descriptors: Effect Size, Meta Analysis, Models, Multivariate Analysis