NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Molenaar, Peter C. M. – Multivariate Behavioral Research, 2012
Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This article verifies the…
Descriptors: Structural Equation Models, Algebra, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Reise, Steven P. – Multivariate Behavioral Research, 2012
Bifactor latent structures were introduced over 70 years ago, but only recently has bifactor modeling been rediscovered as an effective approach to modeling "construct-relevant" multidimensionality in a set of ordered categorical item responses. I begin by describing the Schmid-Leiman bifactor procedure (Schmid & Leiman, 1957) and highlight its…
Descriptors: Models, Factor Structure, Factor Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl – Multivariate Behavioral Research, 2011
The standardization of loadings gives a metric to the corresponding latent variable and thus scales the variance of this latent variable. By assigning an appropriately estimated weight to all the loadings on the same latent variable it can be achieved that the average squared loading is 1 as the result of standardization. As a consequence, there…
Descriptors: Structural Equation Models, Short Term Memory, Evaluation Methods, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
We examine emotion self-regulation and coregulation in romantic couples using daily self-reports of positive and negative affect. We fit these data using a damped linear oscillator model specified as a latent differential equation to investigate affect dynamics at the individual level and coupled influences for the 2 partners in each couple.…
Descriptors: Affective Behavior, Calculus, Models, Females
Peer reviewed Peer reviewed
Direct linkDirect link
Marsh, Herbert W.; Ludtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt; Nagengast, Benjamin – Multivariate Behavioral Research, 2009
This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2)…
Descriptors: Educational Environment, Context Effect, Models, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C. – Multivariate Behavioral Research, 2005
Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…
Descriptors: Markov Processes, Models, Responses, Modeling (Psychology)
Peer reviewed Peer reviewed
Curran, Patrick J.; Bollen, Kenneth A.; Paxton, Pamela; Kirby, James; Chen, Feinian – Multivariate Behavioral Research, 2002
Examined several hypotheses about the suitability of the noncentral chi square in applied research using Monte Carlo simulation experiments with seven sample sizes and three distinct model types, each with five specifications. Results show that, in general, for models with small to moderate misspecification, the noncentral chi-square is well…
Descriptors: Chi Square, Models, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Duncan, Susan C.; Duncan, Terry E. – Multivariate Behavioral Research, 1994
Using an approach to the analysis of missing data, this study investigated developmental trends in alcohol, marijuana, and cigarette use among 750 adolescents across 5 years using multiple-group latent growth modeling. Latent variable structural equation modeling and missing data approaches to studying developmental change are explored. (SLD)
Descriptors: Adolescents, Change, Child Development, Drinking
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods