NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zsuzsa Bakk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A standard assumption of latent class (LC) analysis is conditional independence, that is the items of the LC are independent of the covariates given the LCs. Several approaches have been proposed for identifying violations of this assumption. The recently proposed likelihood ratio approach is compared to residual statistics (bivariate residuals…
Descriptors: Goodness of Fit, Error of Measurement, Comparative Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta; Tueller, Stephen – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent class clustering, but they have very different sets of strengths and weaknesses. Taxometric procedures, popular in psychiatric and psychopathology applications, do not rely on distributional assumptions. Their sole purpose is to detect the presence of latent…
Descriptors: Classification, Models, Statistical Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…
Descriptors: Structural Equation Models, Differences, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…
Descriptors: Models, Comparative Analysis, Groups, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Emily C.; Meade, Adam W.; DuVernet, Amy M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Confirmatory factor analytic tests of measurement invariance (MI) require a referent indicator (RI) for model identification. Although the assumption that the RI is perfectly invariant across groups is acknowledged as problematic, the literature provides relatively little guidance for researchers to identify the conditions under which the practice…
Descriptors: Measurement, Validity, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Cheung, Mike W. L.; Chan, Wai – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…
Descriptors: Structural Equation Models, Simulation, Social Sciences, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Forero, Carlos G.; Maydeu-Olivares, Alberto; Gallardo-Pujol, David – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Factor analysis models with ordinal indicators are often estimated using a 3-stage procedure where the last stage involves obtaining parameter estimates by least squares from the sample polychoric correlations. A simulation study involving 324 conditions (1,000 replications per condition) was performed to compare the performance of diagonally…
Descriptors: Factor Analysis, Models, Least Squares Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Lijuan; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
Descriptors: Simulation, Bayesian Statistics, Comparative Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Hox, Joop J.; Kleiboer, Annet M. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
This study describes a comparison between retrospective questions and daily diaries inquiring about positive and negative support in spousal interactions. The design was a multitrait-multimethod matrix with trait factors of positive and negative support, and method factors of retrospective questions and daily asked questions. Five questions were…
Descriptors: Comparative Analysis, Interviews, Diaries, Spouses
Peer reviewed Peer reviewed
Direct linkDirect link
Jones-Farmer, L. Allison; Pitts, Jennifer P.; Rainer, R. Kelly – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Although SAS PROC CALIS is not designed to perform multigroup comparisons, it is believed that SAS can be "tricked" into doing so for groups of equal size. At present, there are no comprehensive examples of the steps involved in performing a multigroup comparison in SAS. The purpose of this article is to illustrate these steps. We demonstrate…
Descriptors: Goodness of Fit, Structural Equation Models, Measurement Techniques, Interpersonal Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Ximenez, Carmen – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The recovery of weak factors has been extensively studied in the context of exploratory factor analysis. This article presents the results of a Monte Carlo simulation study of recovery of weak factor loadings in confirmatory factor analysis under conditions of estimation method (maximum likelihood vs. unweighted least squares), sample size,…
Descriptors: Monte Carlo Methods, Factor Analysis, Least Squares Statistics, Sample Size