NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Steffen Nestler; Sarah Humberg – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Several variants of the autoregressive structural equation model were suggested over the past years, including, for example, the random intercept autoregressive panel model, the latent curve model with structured residuals, and the STARTS model. The present work shows how to place these models into a mixed-effects model framework and how to…
Descriptors: Structural Equation Models, Computer Software, Models, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Descriptors: Models, Statistical Analysis, Structural Equation Models, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Schumacker, Randall E. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Amos 5.0 (Arbuckle, 2003) permits exploratory specification searches for the best theoretical model given an initial model using the following fit function criteria: chi-square (C), chi-square--df (C--df), Akaike Information Criteria (AIC), Browne-Cudeck criterion (BCC), Bayes Information Criterion (BIC) , chi-square divided by the degrees of…
Descriptors: Computer Software, Structural Equation Models, Models, Search Strategies