Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 10 |
Descriptor
Models | 10 |
Monte Carlo Methods | 10 |
Computation | 4 |
Factor Analysis | 4 |
Comparative Analysis | 3 |
Goodness of Fit | 3 |
Least Squares Statistics | 3 |
Simulation | 3 |
Bayesian Statistics | 2 |
Data Analysis | 2 |
Error of Measurement | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 10 |
Author
Chen, Qi | 1 |
Ciesla, Jeffrey A. | 1 |
Cole, David A. | 1 |
Fan Jia | 1 |
Fan, Xitao | 1 |
Ferrer, Emilio | 1 |
Forero, Carlos G. | 1 |
Gallardo-Pujol, David | 1 |
Gyeongcheol Cho | 1 |
Heungsun Hwang | 1 |
Ihnwhi Heo | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 6 |
Reports - Evaluative | 4 |
Education Level
Elementary Education | 1 |
Grade 1 | 1 |
Audience
Location
Maryland | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Chen, Qi; Kwok, Oi-Man; Luo, Wen; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Growth mixture modeling (GMM) is a relatively new technique for analyzing longitudinal data. However, when applying GMM, researchers might assume that the higher level (nonrepeated measure) units (e.g., students) are independent from each other even though it might not always be true. This article reports the results of a simulation study…
Descriptors: Longitudinal Studies, Data Analysis, Models, Monte Carlo Methods
Song, Hairong; Ferrer, Emilio – Structural Equation Modeling: A Multidisciplinary Journal, 2009
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Descriptors: Factor Analysis, Computation, Mathematics, Maximum Likelihood Statistics
Forero, Carlos G.; Maydeu-Olivares, Alberto; Gallardo-Pujol, David – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Factor analysis models with ordinal indicators are often estimated using a 3-stage procedure where the last stage involves obtaining parameter estimates by least squares from the sample polychoric correlations. A simulation study involving 324 conditions (1,000 replications per condition) was performed to compare the performance of diagonally…
Descriptors: Factor Analysis, Models, Least Squares Statistics, Computation
Kim, YoungKoung; Muthen, Bengt O. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
This study introduces a two-part factor mixture model as an alternative analysis approach to modeling data where strong floor effects and unobserved population heterogeneity exist in the measured items. As the names suggests, a two-part factor mixture model combines a two-part model, which addresses the problem of strong floor effects by…
Descriptors: Factor Analysis, Models, Aggression, Behavior Rating Scales
Wang, Lijuan; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
Descriptors: Simulation, Bayesian Statistics, Comparative Analysis, Computation
Fan, Xitao; Sivo, Stephen A. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In research concerning model invariance across populations, researchers have discussed the limitations of the conventional chi-square difference test ([Delta] chi-square test). There have been some research efforts in using goodness-of-fit indexes (i.e., [Delta]goodness-of-fit indexes) for assessing multisample model invariance, and some specific…
Descriptors: Monte Carlo Methods, Goodness of Fit, Statistical Analysis, Simulation
Ciesla, Jeffrey A.; Cole, David A.; Steiger, James H. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Trait-State-Occasion (TSO) covariance models represent an important advance in methods for studying the longitudinal stability of latent constructs. Such models have only been examined under fairly restricted conditions (e.g., having only 2 tau-equivalent indicators per wave). In this study, Monte Carlo simulations revealed the effects of having 2…
Descriptors: Models, Item Response Theory, Monte Carlo Methods, Statistical Analysis
Ximenez, Carmen – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The recovery of weak factors has been extensively studied in the context of exploratory factor analysis. This article presents the results of a Monte Carlo simulation study of recovery of weak factor loadings in confirmatory factor analysis under conditions of estimation method (maximum likelihood vs. unweighted least squares), sample size,…
Descriptors: Monte Carlo Methods, Factor Analysis, Least Squares Statistics, Sample Size