NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 72 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Julian F. Lohmann; Nils Machts; Jens Möller; Steffen Zitzmann – Educational Psychology Review, 2025
We propose a novel approach for modeling judgment accuracy that, for the first time, allows for simultaneously considering the rank, level, and differentiation component, the predominantly applied operationalization of teacher judgment accuracy. These components are conceptualized as latent, unobserved individual abilities. The model is introduced…
Descriptors: Teacher Attitudes, Evaluative Thinking, Accuracy, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ferdinand Valentin Stoye; Claudia Tschammler; Oliver Kuss; Annika Hoyer – Research Synthesis Methods, 2024
The development of new statistical models for the meta-analysis of diagnostic test accuracy studies is still an ongoing field of research, especially with respect to summary receiver operating characteristic (ROC) curves. In the recently published updated version of the "Cochrane Handbook for Systematic Reviews of Diagnostic Test…
Descriptors: Diagnostic Tests, Accuracy, Barriers, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aiman Mohammad Freihat; Omar Saleh Bani Yassin – Educational Process: International Journal, 2025
Background/purpose: This study aimed to reveal the accuracy of estimation of multiple-choice test items parameters following the models of the item-response theory in measurement. Materials/methods: The researchers depended on the measurement accuracy indicators, which express the absolute difference between the estimated and actual values of the…
Descriptors: Accuracy, Computation, Multiple Choice Tests, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Gorney, Kylie; Wollack, James A. – Journal of Educational Measurement, 2022
Detection methods for item preknowledge are often evaluated in simulation studies where models are used to generate the data. To ensure the reliability of such methods, it is crucial that these models are able to accurately represent situations that are encountered in practice. The purpose of this article is to provide a critical analysis of…
Descriptors: Prior Learning, Simulation, Models, Reaction Time
Peer reviewed Peer reviewed
Direct linkDirect link
Harikesh Singh; Li-Minn Ang; Dipak Paudyal; Mauricio Acuna; Prashant Kumar Srivastava; Sanjeev Kumar Srivastava – Technology, Knowledge and Learning, 2025
Wildfires pose significant environmental threats in Australia, impacting ecosystems, human lives, and property. This review article provides a comprehensive analysis of various empirical and dynamic wildfire simulators alongside machine learning (ML) techniques employed for wildfire prediction in Australia. The study examines the effectiveness of…
Descriptors: Artificial Intelligence, Computer Software, Computer Simulation, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matthew J. Madison; Seungwon Chung; Junok Kim; Laine P. Bradshaw – Grantee Submission, 2023
Recent developments have enabled the modeling of longitudinal assessment data in a diagnostic classification model (DCM) framework. These longitudinal DCMs were developed to provide measures of student growth on a discrete scale in the form of attribute mastery transitions, thereby supporting categorical and criterion-referenced interpretations of…
Descriptors: Models, Cognitive Measurement, Diagnostic Tests, Classification
Christopher E. Shank – ProQuest LLC, 2024
This dissertation compares the performance of equivalence test (EQT) and null hypothesis test (NHT) procedures for identifying invariant and noninvariant factor loadings under a range of experimental manipulations. EQT is the statistically appropriate approach when the research goal is to find evidence of group similarity rather than group…
Descriptors: Factor Analysis, Goodness of Fit, Intervals, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cassiday, Kristina R.; Cho, Youngmi; Harring, Jeffrey R. – Educational and Psychological Measurement, 2021
Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth…
Descriptors: Probability, Models, Simulation, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Ö. Emre C. Alagöz; Thorsten Meiser – Educational and Psychological Measurement, 2024
To improve the validity of self-report measures, researchers should control for response style (RS) effects, which can be achieved with IRTree models. A traditional IRTree model considers a response as a combination of distinct decision-making processes, where the substantive trait affects the decision on response direction, while decisions about…
Descriptors: Item Response Theory, Validity, Self Evaluation (Individuals), Decision Making
Egamaria Alacam; Craig K. Enders; Han Du; Brian T. Keller – Grantee Submission, 2023
Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score…
Descriptors: Regression (Statistics), Scores, Psychometrics, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Nakayama, Minoru; Sciarrone, Filippo; Temperini, Marco; Uto, Masaki – International Journal of Distance Education Technologies, 2022
Massive open on-line courses (MOOCs) are effective and flexible resources to educate, train, and empower populations. Peer assessment (PA) provides a powerful pedagogical strategy to support educational activities and foster learners' success, also where a huge number of learners is involved. Item response theory (IRT) can model students'…
Descriptors: Item Response Theory, Peer Evaluation, MOOCs, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Journal of Educational Measurement, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5