Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 13 |
Descriptor
Artificial Intelligence | 14 |
Data Processing | 14 |
Models | 14 |
Educational Technology | 6 |
Prediction | 6 |
Automation | 5 |
Data Collection | 5 |
Classification | 4 |
Decision Making | 4 |
Higher Education | 4 |
Intelligent Tutoring Systems | 4 |
More ▼ |
Source
Author
Stamper, John | 2 |
Adadi, Amina | 1 |
Barnes, Tiffany | 1 |
Boyer, Kristy Elizabeth | 1 |
Brinkman, Paul T. | 1 |
Calders, Toon | 1 |
Cavalli-Sforza, Violetta, Ed. | 1 |
Conati, Cristina | 1 |
Croy, Marvin | 1 |
Gross, Markus | 1 |
Ha, Eun Young | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 7 |
Collected Works - Proceedings | 3 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Opinion Papers | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 5 |
Elementary Secondary Education | 4 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Brazil | 2 |
Netherlands | 2 |
Asia | 1 |
Australia | 1 |
Connecticut | 1 |
Denmark | 1 |
Egypt | 1 |
Estonia | 1 |
Estonia (Tallinn) | 1 |
Florida | 1 |
Germany | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Lee, Chia-An; Huang, Nen-Fu; Tzeng, Jian-Wei; Tsai, Pin-Han – IEEE Transactions on Learning Technologies, 2023
Massive open online courses offer a valuable platform for efficient and flexible learning. They can improve teaching and learning effectiveness by enabling the evaluation of learning behaviors and the collection of feedback from students. The knowledge map approach constitutes a suitable tool for evaluating and presenting students' learning…
Descriptors: Artificial Intelligence, MOOCs, Concept Mapping, Student Evaluation
Olga Ovtšarenko – Discover Education, 2024
Machine learning (ML) methods are among the most promising technologies with wide-ranging research opportunities, particularly in the field of education, where they can be used to enhance student learning outcomes. This study explores the potential of machine learning algorithms to build and train models using log data from the "3D…
Descriptors: Artificial Intelligence, Algorithms, Technology Uses in Education, Opportunities
Tiffany Tseng; Matt J. Davidson; Luis Morales-Navarro; Jennifer King Chen; Victoria Delaney; Mark Leibowitz; Jazbo Beason; R. Benjamin Shapiro – ACM Transactions on Computing Education, 2024
Machine learning (ML) models are fundamentally shaped by data, and building inclusive ML systems requires significant considerations around how to design representative datasets. Yet, few novice-oriented ML modeling tools are designed to foster hands-on learning of dataset design practices, including how to design for data diversity and inspect…
Descriptors: Artificial Intelligence, Models, Data Processing, Design
Klingler, Severin; Wampfler, Rafael; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2017
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high volumes from intelligent tutoring systems and massive open online courses. In this paper, we…
Descriptors: Classification, Artificial Intelligence, Networks, Learning Disabilities
Nikelshpur, Dmitry O. – ProQuest LLC, 2014
Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…
Descriptors: Artificial Intelligence, Networks, Computation, Topology
Boyer, Kristy Elizabeth; Phillips, Robert; Ingram, Amy; Ha, Eun Young; Wallis, Michael; Vouk, Mladen; Lester, James – International Journal of Artificial Intelligence in Education, 2011
Identifying effective tutorial dialogue strategies is a key issue for intelligent tutoring systems research. Human-human tutoring offers a valuable model for identifying effective tutorial strategies, but extracting them is a challenge because of the richness of human dialogue. This article addresses that challenge through a machine learning…
Descriptors: Markov Processes, Intelligent Tutoring Systems, Tutoring, Program Effectiveness
Stamper, John; Barnes, Tiffany; Croy, Marvin – International Journal of Artificial Intelligence in Education, 2011
The Hint Factory is an implementation of our novel method to automatically generate hints using past student data for a logic tutor. One disadvantage of the Hint Factory is the time needed to gather enough data on new problems in order to provide hints. In this paper we describe the use of expert sample solutions to "seed" the hint generation…
Descriptors: Cues, Prompting, Learning Strategies, Teaching Methods
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing

Brinkman, Paul T. – New Directions for Institutional Research, 1984
Computer-based information systems have evolved from emphasizing data processing to providing full and flexible support for management. They have moved from providing mere data to providing a medium for representing knowledge wherein managers can analyze data, formulate ideas, structure arguments, and building models. (Author/MLW)
Descriptors: Artificial Intelligence, Cognitive Processes, Computers, Data Processing
Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John – International Working Group on Educational Data Mining, 2011
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…
Descriptors: Academic Achievement, Logical Thinking, Profiles, Tutoring
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers