Publication Date
In 2025 | 14 |
Since 2024 | 56 |
Since 2021 (last 5 years) | 87 |
Since 2016 (last 10 years) | 104 |
Since 2006 (last 20 years) | 112 |
Descriptor
Artificial Intelligence | 139 |
Models | 139 |
Teaching Methods | 83 |
Evaluation Methods | 48 |
Computer Software | 36 |
Foreign Countries | 36 |
Technology Uses in Education | 33 |
Problem Solving | 28 |
Computer Assisted Instruction | 26 |
Intelligent Tutoring Systems | 22 |
Educational Technology | 21 |
More ▼ |
Source
Author
Barnes, Tiffany | 2 |
Barnes, Tiffany, Ed. | 2 |
Chi, Min | 2 |
Danielle S. McNamara | 2 |
Hellas, Arto | 2 |
Mihai Dascalu | 2 |
Mizoguchi, Riichiro | 2 |
Renu Balyan | 2 |
A. M. Sadek | 1 |
Abdullah, Rina | 1 |
Adelina Asmawi | 1 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 9 |
Practitioners | 3 |
Teachers | 2 |
Students | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Kaufman Brief Intelligence… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Yun Long; Haifeng Luo; Yu Zhang – npj Science of Learning, 2024
This study explores the use of Large Language Models (LLMs), specifically GPT-4, in analysing classroom dialogue--a key task for teaching diagnosis and quality improvement. Traditional qualitative methods are both knowledge- and labour-intensive. This research investigates the potential of LLMs to streamline and enhance this process. Using…
Descriptors: Classroom Communication, Computational Linguistics, Chinese, Mathematics Instruction
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Thanh Thuy Do; Golnoosh Babaei; Paolo Pagnottoni – Measurement: Interdisciplinary Research and Perspectives, 2024
Complex Machine Learning (ML) models used to support decision-making in peer-to-peer (P2P) lending often lack clear, accurate, and interpretable explanations. While the game-theoretic concept of Shapley values and its computationally efficient variant Kernel SHAP may be employed for this aim, similarly to other existing methods, the latter makes…
Descriptors: Artificial Intelligence, Risk Management, Credit (Finance), Prediction
Zhengjun Li; Huayang Kang – International Journal of Web-Based Learning and Teaching Technologies, 2025
The rapid development of higher education in China has significantly advanced physical education within universities, contributing to students' comprehensive development and national health improvement. However, the expansion of university enrollment has introduced challenges such as a decrease in per capita sports resources and declines in…
Descriptors: Physical Education Teachers, Teacher Effectiveness, Physical Education, Evaluation Methods
Kylie L. Anglin – Annenberg Institute for School Reform at Brown University, 2025
Since 2018, institutions of higher education have been aware of the "enrollment cliff" which refers to expected declines in future enrollment. This paper attempts to describe how prepared institutions in Ohio are for this future by looking at trends leading up to the anticipated decline. Using IPEDS data from 2012-2022, we analyze trends…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Qiuyu Zheng; Zengzhao Chen; Mengke Wang; Yawen Shi; Shaohui Chen; Zhi Liu – IEEE Transactions on Learning Technologies, 2024
The rationality and the effectiveness of classroom teaching behavior directly influence the quality of classroom instruction. Analyzing teaching behavior intelligently can provide robust data support for teacher development and teaching supervision. By observing verbal and nonverbal behaviors of teachers in the classroom, valuable data on…
Descriptors: Teacher Behavior, Teacher Student Relationship, Verbal Communication, Nonverbal Communication
Reese Butterfuss; Harold Doran – Educational Measurement: Issues and Practice, 2025
Large language models are increasingly used in educational and psychological measurement activities. Their rapidly evolving sophistication and ability to detect language semantics make them viable tools to supplement subject matter experts and their reviews of large amounts of text statements, such as educational content standards. This paper…
Descriptors: Alignment (Education), Academic Standards, Content Analysis, Concept Mapping
Hamzeh Ghasemzadeh; Robert E. Hillman; Daryush D. Mehta – Journal of Speech, Language, and Hearing Research, 2024
Purpose: Many studies using machine learning (ML) in speech, language, and hearing sciences rely upon cross-validations with single data splitting. This study's first purpose is to provide quantitative evidence that would incentivize researchers to instead use the more robust data splitting method of nested k-fold cross-validation. The second…
Descriptors: Artificial Intelligence, Speech Language Pathology, Statistical Analysis, Models
Tsubasa Minematsu; Atsushi Shimada – International Association for Development of the Information Society, 2024
In using large language models (LLMs) for education, such as distractors in multiple-choice questions and learning by teaching, error-containing content is used. Prompt tuning and retraining LLMs are possible ways of having LLMs generate error-containing sentences in the learning content. However, there needs to be more discussion on how to tune…
Descriptors: Educational Technology, Technology Uses in Education, Error Patterns, Sentences
Kylie Anglin – AERA Open, 2024
Given the rapid adoption of machine learning methods by education researchers, and the growing acknowledgment of their inherent risks, there is an urgent need for tailored methodological guidance on how to improve and evaluate the validity of inferences drawn from these methods. Drawing on an integrative literature review and extending a…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Swamy, Vinitra; Radmehr, Bahar; Krco, Natasa; Marras, Mirko; Käser, Tanja – International Educational Data Mining Society, 2022
Neural networks are ubiquitous in applied machine learning for education. Their pervasive success in predictive performance comes alongside a severe weakness, the lack of explainability of their decisions, especially relevant in humancentric fields. We implement five state-of-the-art methodologies for explaining black-box machine learning models…
Descriptors: Artificial Intelligence, Academic Achievement, Grade Prediction, MOOCs