Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 17 |
Descriptor
Bayesian Statistics | 22 |
Data Collection | 22 |
Models | 22 |
Prediction | 7 |
Data Analysis | 6 |
Foreign Countries | 6 |
Accuracy | 5 |
Artificial Intelligence | 5 |
Decision Making | 5 |
Educational Research | 5 |
Evaluation Methods | 5 |
More ▼ |
Source
Author
Barnes, Tiffany, Ed. | 2 |
Romero, Cristobal, Ed. | 2 |
Aleven, Vincent | 1 |
Bakhshi, Ali | 1 |
Ballera, Melvin A. | 1 |
Baraniuk, Richard | 1 |
Baron, Joan | 1 |
Beheshti, Behzad | 1 |
Bradlow, Eric T. | 1 |
Brown, C. Hendricks | 1 |
Brunskill, Emma | 1 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 1 |
Location
Australia | 1 |
Brazil | 1 |
China | 1 |
Czech Republic | 1 |
Finland | 1 |
Indiana | 1 |
Israel | 1 |
Massachusetts | 1 |
Morocco | 1 |
Netherlands | 1 |
North Carolina | 1 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 1 |
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
National Assessment of… | 1 |
What Works Clearinghouse Rating
Xing, Wanli; Du, Dongping; Bakhshi, Ali; Chiu, Kuo-Chun; Du, Hanxiang – IEEE Transactions on Learning Technologies, 2021
Predictive modeling in online education is a popular topic in learning analytics research and practice. This study proposes a novel predictive modeling method to improve model transferability over time within the same course and across different courses. The research gaps addressed are limited evidence showing whether a predictive model built on…
Descriptors: Electronic Learning, Bayesian Statistics, Prediction, Models
Nahar, Khaledun; Shova, Boishakhe Islam; Ria, Tahmina; Rashid, Humayara Binte; Islam, A. H. M. Saiful – Education and Information Technologies, 2021
Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the…
Descriptors: Learning Analytics, College Students, Engineering Education, Data Collection
Mimis, Mohamed; El Hajji, Mohamed; Es-saady, Youssef; Oueld Guejdi, Abdellah; Douzi, Hassan; Mammass, Driss – Education and Information Technologies, 2019
The educational recommendation system to provide support for academic guidance and adaptive learning has always been an important issue of research for smart education. A bad guidance can give rise to difficulties in further studies and can be extended to school dropout. This paper explores the potential of Educational Data Mining for academic…
Descriptors: Educational Counseling, Guidance, Educational Research, Data Collection
Mandel, Travis Scott – ProQuest LLC, 2017
When a new student comes to play an educational game, how can we determine what content to give them such that they learn as much as possible? When a frustrated customer calls in to a helpline, how can we determine what to say to best assist them? When an ill patient comes in to the clinic, how do we determine what tests to run and treatments to…
Descriptors: Reinforcement, Learning Processes, Student Evaluation, Data Collection
DiCerbo, Kristen E.; Xu, Yuning; Levy, Roy; Lai, Emily; Holland, Laura – Educational Assessment, 2017
Inferences about student knowledge, skills, and attributes based on digital activity still largely come from whether students ultimately get a correct result or not. However, the ability to collect activity stream data as individuals interact with digital environments provides information about students' processes as they progress through learning…
Descriptors: Models, Cognitive Processes, Elementary School Students, Grade 3
MacLellan, Christopher J.; Harpstead, Erik; Patel, Rony; Koedinger, Kenneth R. – International Educational Data Mining Society, 2016
While Educational Data Mining research has traditionally emphasized the practical aspects of learner modeling, such as predictive modeling, estimating students knowledge, and informing adaptive instruction, in the current study, we argue that Educational Data Mining can also be used to test and improve our fundamental theories of human learning.…
Descriptors: Educational Research, Data Collection, Learning Theories, Recall (Psychology)
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Beheshti, Behzad; Desmarais, Michel C. – International Educational Data Mining Society, 2015
This study investigates the issue of the goodness of fit of different skills assessment models using both synthetic and real data. Synthetic data is generated from the different skills assessment models. The results show wide differences of performances between the skills assessment models over synthetic data sets. The set of relative performances…
Descriptors: Goodness of Fit, Student Evaluation, Skills, Models
Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin – International Educational Data Mining Society, 2015
We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…
Descriptors: Middle School Students, Problem Solving, Educational Games, Bayesian Statistics
Koc, Levent – ProQuest LLC, 2013
With increasing Internet connectivity and traffic volume, recent intrusion incidents have reemphasized the importance of network intrusion detection systems for combating increasingly sophisticated network attacks. Techniques such as pattern recognition and the data mining of network events are often used by intrusion detection systems to classify…
Descriptors: Bayesian Statistics, Computer Security, Computer Networks, Data Collection
Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma – Grantee Submission, 2016
How should a wide variety of educational activities be sequenced to maximize student learning? Although some experimental studies have addressed this question, educational data mining methods may be able to evaluate a wider range of possibilities and better handle many simultaneous sequencing constraints. We introduce Sequencing Constraint…
Descriptors: Sequential Learning, Data Collection, Information Retrieval, Evaluation Methods
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2010
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Descriptors: Research Skills, Researchers, Internet, Access to Information
Dagne, Getachew A.; Brown, C. Hendricks; Howe, George W. – Psychological Methods, 2007
This article presents new methods for modeling the strength of association between multiple behaviors in a behavioral sequence, particularly those involving substantively important interaction patterns. Modeling and identifying such interaction patterns becomes more complex when behaviors are assigned to more than two categories, as is the case…
Descriptors: Interaction, Bayesian Statistics, Models, Behavior Patterns
Previous Page | Next Page »
Pages: 1 | 2