NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joemari Olea; Kevin Carl Santos – Journal of Educational and Behavioral Statistics, 2024
Although the generalized deterministic inputs, noisy "and" gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that…
Descriptors: Cognitive Measurement, Models, Algorithms, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matthew J. Madison; Seungwon Chung; Junok Kim; Laine P. Bradshaw – Grantee Submission, 2023
Recent developments have enabled the modeling of longitudinal assessment data in a diagnostic classification model (DCM) framework. These longitudinal DCMs were developed to provide measures of student growth on a discrete scale in the form of attribute mastery transitions, thereby supporting categorical and criterion-referenced interpretations of…
Descriptors: Models, Cognitive Measurement, Diagnostic Tests, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Lientje Maas; Matthew J. Madison; Matthieu J. S. Brinkhuis – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models that yield probabilistic classifications of respondents according to a set of discrete latent variables. The current study examines the recently introduced one-parameter log-linear cognitive diagnosis model (1-PLCDM), which has increased interpretability compared with general DCMs due…
Descriptors: Clinical Diagnosis, Classification, Models, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Madeline A. Schellman; Matthew J. Madison – Grantee Submission, 2024
Diagnostic classification models (DCMs) have grown in popularity as stakeholders increasingly desire actionable information related to students' skill competencies. Longitudinal DCMs offer a psychometric framework for providing estimates of students' proficiency status transitions over time. For both cross-sectional and longitudinal DCMs, it is…
Descriptors: Diagnostic Tests, Classification, Models, Psychometrics
Jihong Zhang – ProQuest LLC, 2022
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Zhan, Peida; Liu, Yaohui; Yu, Zhaohui; Pan, Yanfang – Applied Measurement in Education, 2023
Many educational and psychological studies have shown that the development of students is generally step-by-step (i.e. ordinal development) to a specific level. This study proposed a novel longitudinal learning diagnosis model with polytomous attributes to track students' ordinal development in learning. Using the concept of polytomous attributes…
Descriptors: Skill Development, Cognitive Measurement, Models, Educational Diagnosis
Wang, Chun; Lu, Jing – Journal of Educational and Behavioral Statistics, 2021
In cognitive diagnostic assessment, multiple fine-grained attributes are measured simultaneously. Attribute hierarchies are considered important structural features of cognitive diagnostic models (CDMs) that provide useful information about the nature of attributes. Templin and Bradshaw first introduced a hierarchical diagnostic classification…
Descriptors: Cognitive Measurement, Models, Vertical Organization, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Xing, Xue – International Journal for Educational and Vocational Guidance, 2019
The log-linear cognitive diagnosis model (LCDM) is a modern technique that dichotomously classifies individuals (e.g., possession and non-possession) on attributes of a multidimensional construct, which is particularly suited to diagnostic and formative assessments where a classification decision is desired (e.g., to assign intervention or not).…
Descriptors: Classification, Occupational Tests, Educational Assessment, Cognitive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Marzieh Haghayeghi; Ali Moghadamzadeh; Hamdollah Ravand; Mohamad Javadipour; Hossein Kareshki – Journal of Psychoeducational Assessment, 2025
This study aimed to address the need for a comprehensive assessment tool to evaluate the mathematical abilities of first-grade students through cognitive diagnostic assessment (CDA). The primary challenge involved in this endeavor was to delineate the specific cognitive skills and sub-skills pertinent to first-grade mathematics (FG-M) and to…
Descriptors: Test Construction, Cognitive Measurement, Check Lists, Mathematics Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew; Chen, Yinghan – Journal of Educational and Behavioral Statistics, 2019
Exploratory cognitive diagnosis models (CDMs) estimate the Q matrix, which is a binary matrix that indicates the attributes needed for affirmative responses to each item. Estimation of Q is an important next step for improving classifications and broadening application of CDMs. Prior research primarily focused on an exploratory version of the…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Bradshaw, Laine; Levy, Roy – Educational Measurement: Issues and Practice, 2019
Although much research has been conducted on the psychometric properties of cognitive diagnostic models, they are only recently being used in operational settings to provide results to examinees and other stakeholders. Using this newer class of models in practice comes with a fresh challenge for diagnostic assessment developers: effectively…
Descriptors: Data Interpretation, Probability, Classification, Diagnostic Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sünbül, Seçil Ömür – International Journal of Evaluation and Research in Education, 2018
In this study, it was aimed to investigate the impact of different missing data handling methods on DINA model parameter estimation and classification accuracy. In the study, simulated data were used and the data were generated by manipulating the number of items and sample size. In the generated data, two different missing data mechanisms…
Descriptors: Data, Test Items, Sample Size, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Terzi, Ragip; Sen, Sedat – SAGE Open, 2019
Large-scale assessments are generally designed for summative purposes to compare achievement among participating countries. However, these nondiagnostic assessments have also been adapted in the context of cognitive diagnostic assessment for diagnostic purposes. Following the large amount of investments in these assessments, it would be…
Descriptors: Achievement Tests, Elementary Secondary Education, Foreign Countries, International Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Henson, Robert; DiBello, Lou; Stout, Bill – Measurement: Interdisciplinary Research and Perspectives, 2018
Diagnostic classification models (DCMs, also known as cognitive diagnosis models) hold the promise of providing detailed classroom information about the skills a student has or has not mastered. Specifically, DCMs are special cases of constrained latent class models where classes are defined based on mastery/nonmastery of a set of attributes (or…
Descriptors: Classification, Diagnostic Tests, Models, Mastery Learning
Previous Page | Next Page »
Pages: 1  |  2