Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 12 |
Descriptor
College Science | 12 |
Models | 12 |
Printing | 12 |
Science Instruction | 9 |
Chemistry | 6 |
Science Laboratories | 5 |
Technology Uses in Education | 5 |
Hands on Science | 4 |
Molecular Structure | 4 |
Scientific Concepts | 4 |
Undergraduate Study | 4 |
More ▼ |
Author
Publication Type
Journal Articles | 12 |
Reports - Descriptive | 8 |
Reports - Research | 3 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 12 |
Postsecondary Education | 10 |
Audience
Teachers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Forringer, Edward Russell – Physics Teacher, 2022
In a 1993 book review, E. Pearlstein asks, "Why don't textbook authors begin their discussion of magnetism by talking about magnets? That's what students have experience with." A similar question can be asked, "Why don't professors have students measure the force between permanent magnets in introductory physics labs?" The…
Descriptors: Science Education, Physics, Magnets, Measurement
Gruber, Daniel M.; Perez, Tynan; Layug, Bege Q.; Ohama, Margaret; Tran, Lydia; Rojas, Luis Angel Flores; Garcia, A. Xavier; Liu, Gang-yu; Miller, William J. W. – Journal of Chemical Education, 2020
We report a simple means to build a model atomic force microscope (AFM) using 3D printing of thermoplastic materials that are commercially available. The model has many of the key parts of an actual AFM including a z-axis stage, an AFM head with a cantilever assembly, and a laser source that reflects off of the back of the cantilever. Using a…
Descriptors: Laboratory Equipment, Printing, College Science, Undergraduate Study
Jones, Oliver A. H.; Stevenson, Paul G.; Hameka, Simone C.; Osborne, Dale A.; Taylor, Patrick D.; Spencer, Michelle J. S. – Journal of Chemical Education, 2021
The use of three-dimensional printing in chemistry education has expanded greatly in the past 10 years. The technique has been used to demonstrate a range of concepts including molecular structure, orbitals, and point groups; to produce chemical equipment such as cuvettes and columns; and even to print out mathematical shapes and functions. Here,…
Descriptors: Science Instruction, Chemistry, Spectroscopy, Printing
Christopher T. Jurgenson – Journal of Chemical Education, 2022
Structures of 10 proteins from the Protein Data Bank were 3D printed as part of an undergraduate biochemistry teaching laboratory. All structures were successfully printed in either a space filling surface representation or a cartoon representation that traces the Ca carbon atoms of each amino acid residue. All structures were printed using…
Descriptors: Printing, Models, Visualization, Biochemistry
Carroll, Felix A.; Blauch, David N. – Journal of Chemical Education, 2018
Three-dimensional printing was used to prepare a p-bonding model with embedded magnets. The model enables students to have a kinesthetic experience that simulates the energetics of bonding, antibonding, and nonbonding p-orbital interactions.
Descriptors: Science Instruction, Printing, Models, Magnets
Grumman, Anna S.; Carroll, Felix A. – Journal of Chemical Education, 2019
3D printing was used to prepare space-filling models of electron density isosurfaces and high-resolution molecular models on the basis of the van der Waals radii of atoms. Both model types provide students with kinesthetic simulations of steric effects in bimolecular substitution and elimination reactions. The models can be printed in small sizes…
Descriptors: Molecular Structure, Science Instruction, Printing, Geometric Concepts
Suchman, Erica L.; McLean, Jennifer; Denham, Steven T.; Shatila, Dana; Prowel, David – HAPS Educator, 2018
We used 3D printing to manufacture models that allow students to explore antibody-epitope interactions. One of the more difficult concepts for students in general microbiology and immunology courses is visualizing the interactions surrounding antibodies and the multiple epitopes found on antigens. We designed and printed antibodies that recognize…
Descriptors: Models, Printing, Microbiology, Lecture Method
Bharti, Neelam; Singh, Shailendra – Journal of Chemical Education, 2017
As an emerging technology, three-dimensional (3D) printing has gained much attention as a rapid prototyping and small-scale manufacturing technology around the world. In the changing scenario of library inclusion, Makerspaces are becoming a part of most public and academic libraries, and 3D printing is one of the technologies included in…
Descriptors: Science Instruction, Printing, Geometric Concepts, Depth Perception
Carroll, Felix A.; Blauch, David N. – Journal of Chemical Education, 2017
3D printing was used to prepare models of the calculated geometries of unsaturated organic structures. Incorporation of p orbital isosurfaces into the models enables students in introductory organic chemistry courses to have hands-on experience with the concept of orbital alignment in strained and unstrained p systems.
Descriptors: Science Instruction, Organic Chemistry, Hands on Science, Introductory Courses
Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott – Journal of Chemical Education, 2016
The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…
Descriptors: Printing, Technology Integration, Handheld Devices, Science Instruction
Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T. – Journal of Chemical Education, 2017
Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…
Descriptors: Organic Chemistry, Science Instruction, Scientific Concepts, Educational Technology
Bagley, James R.; Galpin, Andrew J. – Biochemistry and Molecular Biology Education, 2015
Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex…
Descriptors: Human Body, Cytology, Interdisciplinary Approach, Visual Aids