NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 84 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Cheng; Butts, Carter T.; Hipp, John; Lakon, Cynthia M. – Sociological Methods & Research, 2022
The recent popularity of models that capture the dynamic coevolution of both network structure and behavior has driven the need for summary indices to assess the adequacy of these models to reproduce dynamic properties of scientific or practical importance. Whereas there are several existing indices for assessing the ability of the model to…
Descriptors: Models, Goodness of Fit, Comparative Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Duxbury, Scott W. – Sociological Methods & Research, 2023
This study shows that residual variation can cause problems related to scaling in exponential random graph models (ERGM). Residual variation is likely to exist when there are unmeasured variables in a model--even those uncorrelated with other predictors--or when the logistic form of the model is inappropriate. As a consequence, coefficients cannot…
Descriptors: Graphs, Scaling, Research Problems, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Block, Per; Stadtfeld, Christoph; Snijders, Tom A. B. – Sociological Methods & Research, 2019
Two approaches for the statistical analysis of social network generation are widely used; the tie-oriented exponential random graph model (ERGM) and the stochastic actor-oriented model (SAOM) or Siena model. While the choice for either model by empirical researchers often seems arbitrary, there are important differences between these models that…
Descriptors: Statistical Analysis, Social Networks, Models, Network Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Gosho, Masahiko; Ishii, Ryota; Oba, Koji; Furukawa, Toshi A. – Research Synthesis Methods, 2020
Network meta-analysis has been gaining prominence as an evidence synthesis method that enables the comprehensive synthesis and simultaneous comparison of multiple treatments. In many network meta-analyses, some of the constituent studies may have markedly different characteristics from the others, and may be influential enough to change the…
Descriptors: Networks, Meta Analysis, Evidence, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Antonio Fabio Bella – Journal of Moral Education, 2024
I present a new model of the self-regulation of virtue that integrates perspectives on emotion, cognition, and motivation. Across three vignette-based studies in US/UK (N = 1,540), I developed through exploratory and confirmatory factor analysis a multi-item measure of broadening and defensive responses, the Self-Regulation of Virtue Inventory…
Descriptors: Moral Values, Moral Development, Metacognition, Network Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Efthimiou, Orestis; White, Ian R. – Research Synthesis Methods, 2020
Standard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, eg, when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we…
Descriptors: Models, Meta Analysis, Network Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Jinnie; Gierl, Mark J. – Language Testing, 2021
Automated essay scoring (AES) has emerged as a secondary or as a sole marker for many high-stakes educational assessments, in native and non-native testing, owing to remarkable advances in feature engineering using natural language processing, machine learning, and deep-neural algorithms. The purpose of this study is to compare the effectiveness…
Descriptors: Scoring, Essays, Writing Evaluation, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gardner, Josh; Brooks, Christopher; Li, Warren – Journal of Learning Analytics, 2018
In this paper, we evaluate the complete undergraduate co-enrollment network over a decade of education at a large American public university. We provide descriptive and exploratory analyses of the network, demonstrating that the co-enrollment networks evaluated follow power-law degree distributions similar to many other large-scale networks; that…
Descriptors: Markov Processes, Classification, Undergraduate Students, Grade Point Average
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Qianying; Liao, Jing; Lapata, Mirella; Macleod, Malcolm – Research Synthesis Methods, 2022
We sought to apply natural language processing to the task of automatic risk of bias assessment in preclinical literature, which could speed the process of systematic review, provide information to guide research improvement activity, and support translation from preclinical to clinical research. We use 7840 full-text publications describing…
Descriptors: Risk, Natural Language Processing, Medical Research, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Kumar, Abhilasha A.; Balota, David A.; Steyvers, Mark – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2020
We examined 3 different network models of representing semantic knowledge (5,018-word directed and undirected step distance networks, and an association-correlation network) to predict lexical priming effects. In Experiment 1, participants made semantic relatedness judgments for word pairs with varying path lengths. Response latencies for…
Descriptors: Semantics, Networks, Correlation, Semitic Languages
Peer reviewed Peer reviewed
Direct linkDirect link
de Roo, Nina; Amede, Tewodros; Elias, Eyasu; Almekinders, Conny; Leeuwis, Cees – Journal of Agricultural Education and Extension, 2023
Purpose: Agricultural extension services in poor countries often identify opinion leaders based on criteria such as wealth and social status. We explore the effectiveness of this top-down approach by analysing the role of so-called model and nodal farmers in the diffusion of malt barley in a highland community in Ethiopia. Research approach: We…
Descriptors: Network Analysis, Social Status, Rural Extension, Case Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Yuhao; Li, Xihua; Cao, Yunbo; Zhao, Xuemin; Ye, Qing; Lv, Jiancheng – International Educational Data Mining Society, 2021
In educational applications, "Knowledge Tracing" (KT) has been widely studied for decades as it is considered a fundamental task towards adaptive online learning. Among proposed KT methods, Deep Knowledge Tracing (DKT) and its variants are by far the most effective ones due to the high flexibility of the neural network. However, DKT…
Descriptors: Online Courses, Computer Assisted Instruction, Networks, Learning Analytics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6