NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Location
China1
Laws, Policies, & Programs
Assessments and Surveys
Trends in International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Qianru; de la Torre, Jimmy; Law, Nancy – Journal of Educational and Behavioral Statistics, 2023
To expand the use of cognitive diagnosis models (CDMs) to longitudinal assessments, this study proposes a bias-corrected three-step estimation approach for latent transition CDMs with covariates by integrating a general CDM and a latent transition model. The proposed method can be used to assess changes in attribute mastery status and attribute…
Descriptors: Cognitive Measurement, Models, Statistical Bias, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Yinghan; Wang, Shiyu – Journal of Educational and Behavioral Statistics, 2023
Attribute hierarchy, the underlying prerequisite relationship among attributes, plays an important role in applying cognitive diagnosis models (CDM) for designing efficient cognitive diagnostic assessments. However, there are limited statistical tools to directly estimate attribute hierarchy from response data. In this study, we proposed a…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matthew J. Madison; Seungwon Chung; Junok Kim; Laine P. Bradshaw – Grantee Submission, 2023
Recent developments have enabled the modeling of longitudinal assessment data in a diagnostic classification model (DCM) framework. These longitudinal DCMs were developed to provide measures of student growth on a discrete scale in the form of attribute mastery transitions, thereby supporting categorical and criterion-referenced interpretations of…
Descriptors: Models, Cognitive Measurement, Diagnostic Tests, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Zhan, Peida; Liu, Yaohui; Yu, Zhaohui; Pan, Yanfang – Applied Measurement in Education, 2023
Many educational and psychological studies have shown that the development of students is generally step-by-step (i.e. ordinal development) to a specific level. This study proposed a novel longitudinal learning diagnosis model with polytomous attributes to track students' ordinal development in learning. Using the concept of polytomous attributes…
Descriptors: Skill Development, Cognitive Measurement, Models, Educational Diagnosis
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro; Okada, Kensuke – Journal of Educational and Behavioral Statistics, 2020
In this article, we propose a variational Bayes (VB) inference method for the deterministic input noisy AND gate model of cognitive diagnostic assessment. The proposed method, which applies the iterative algorithm for optimization, is derived based on the optimal variational posteriors of the model parameters. The proposed VB inference enables…
Descriptors: Bayesian Statistics, Statistical Inference, Cognitive Measurement, Mathematics
Li, Tingxuan; Traynor, Anne – AERA Open, 2022
Computational thinking (CT) is a set of cognitive skills that every child should acquire. K-12 classrooms are expected to provide students opportunities (tasks) to think computationally. We introduce a CT competency assessment for middle school students. The assessment design process started by establishing a cognitive model of CT domain mastery,…
Descriptors: Cognitive Measurement, Computation, Thinking Skills, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Gao, Xuliang; Ma, Wenchao; Wang, Daxun; Cai, Yan; Tu, Dongbo – Journal of Educational and Behavioral Statistics, 2021
This article proposes a class of cognitive diagnosis models (CDMs) for polytomously scored items with different link functions. Many existing polytomous CDMs can be considered as special cases of the proposed class of polytomous CDMs. Simulation studies were carried out to investigate the feasibility of the proposed CDMs and the performance of…
Descriptors: Cognitive Measurement, Models, Test Items, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew; Chen, Yinghan – Journal of Educational and Behavioral Statistics, 2019
Exploratory cognitive diagnosis models (CDMs) estimate the Q matrix, which is a binary matrix that indicates the attributes needed for affirmative responses to each item. Estimation of Q is an important next step for improving classifications and broadening application of CDMs. Prior research primarily focused on an exploratory version of the…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rachatasumrit, Napol; Koedinger, Kenneth R. – International Educational Data Mining Society, 2021
Student modeling is useful in educational research and technology development due to a capability to estimate latent student attributes. Widely used approaches, such as the Additive Factors Model (AFM), have shown satisfactory results, but they can only handle binary outcomes, which may yield potential information loss. In this work, we propose a…
Descriptors: Models, Student Characteristics, Feedback (Response), Error Correction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Torre, Jimmy de la; Akbay, Lokman – Eurasian Journal of Educational Research, 2019
Purpose: Well-designed assessment methodologies and various cognitive diagnosis models (CDMs) to extract diagnostic information about examinees' individual strengths and weaknesses have been developed. Due to this novelty, as well as educational specialists' lack of familiarity with CDMs, their applications are not widespread. This article aims at…
Descriptors: Cognitive Measurement, Models, Computer Software, Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sünbül, Seçil Ömür – International Journal of Evaluation and Research in Education, 2018
In this study, it was aimed to investigate the impact of different missing data handling methods on DINA model parameter estimation and classification accuracy. In the study, simulated data were used and the data were generated by manipulating the number of items and sample size. In the generated data, two different missing data mechanisms…
Descriptors: Data, Test Items, Sample Size, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Philipp, Michel; Strobl, Carolin; de la Torre, Jimmy; Zeileis, Achim – Journal of Educational and Behavioral Statistics, 2018
Cognitive diagnosis models (CDMs) are an increasingly popular method to assess mastery or nonmastery of a set of fine-grained abilities in educational or psychological assessments. Several inference techniques are available to quantify the uncertainty of model parameter estimates, to compare different versions of CDMs, or to check model…
Descriptors: Computation, Error of Measurement, Models, Cognitive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Henson, Robert; DiBello, Lou; Stout, Bill – Measurement: Interdisciplinary Research and Perspectives, 2018
Diagnostic classification models (DCMs, also known as cognitive diagnosis models) hold the promise of providing detailed classroom information about the skills a student has or has not mastered. Specifically, DCMs are special cases of constrained latent class models where classes are defined based on mastery/nonmastery of a set of attributes (or…
Descriptors: Classification, Diagnostic Tests, Models, Mastery Learning
Oluwalana, Olasumbo O. – ProQuest LLC, 2019
A primary purpose of cognitive diagnosis models (CDMs) is to classify examinees based on their attribute patterns. The Q-matrix (Tatsuoka, 1985), a common component of all CDMs, specifies the relationship between the set of required dichotomous attributes and the test items. Since a Q-matrix is often developed by content-knowledge experts and can…
Descriptors: Classification, Validity, Test Items, International Assessment
Previous Page | Next Page »
Pages: 1  |  2