NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Chen-Wei; Wang, Wen-Chung – Journal of Educational Measurement, 2017
The examinee-selected-item (ESI) design, in which examinees are required to respond to a fixed number of items in a given set of items (e.g., choose one item to respond from a pair of items), always yields incomplete data (i.e., only the selected items are answered and the others have missing data) that are likely nonignorable. Therefore, using…
Descriptors: Item Response Theory, Models, Maximum Likelihood Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lam, Kar Yin; Koning, Alex J.; Franses, Philip Hans – Multivariate Behavioral Research, 2011
We consider the estimation of probabilistic ranking models in the context of conjoint experiments. By using approximate rather than exact ranking probabilities, we avoided the computation of high-dimensional integrals. We extended the approximation technique proposed by Henery (1981) in the context of the Thurstone-Mosteller-Daniels model to any…
Descriptors: Probability, Evaluation Research, Computation, Experiments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bloom, Howard S.; Porter, Kristin E.; Weiss, Michael J.; Raudenbush, Stephen – Society for Research on Educational Effectiveness, 2013
To date, evaluation research and policy analysis have focused mainly on average program impacts and paid little systematic attention to their variation. Recently, the growing number of multi-site randomized trials that are being planned and conducted make it increasingly feasible to study "cross-site" variation in impacts. Important…
Descriptors: Research Methodology, Policy, Evaluation Research, Randomized Controlled Trials
Zhu, Pei; Jacob, Robin; Bloom, Howard; Xu, Zeyu – MDRC, 2011
This paper provides practical guidance for researchers who are designing and analyzing studies that randomize schools--which comprise three levels of clustering (students in classrooms in schools)--to measure intervention effects on student academic outcomes when information on the middle level (classrooms) is missing. This situation arises…
Descriptors: Intervention, Academic Achievement, Research Methodology, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Rhodes, William – Evaluation Review, 2010
Regressions that control for confounding factors are the workhorse of evaluation research. When treatment effects are heterogeneous, however, the workhorse regression leads to estimated treatment effects that lack behavioral interpretations even when the selection on observables assumption holds. Regressions that use propensity scores as weights…
Descriptors: Evaluation Research, Computation, Evaluators, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lazar, Ann A.; Zerbe, Gary O. – Journal of Educational and Behavioral Statistics, 2011
Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…
Descriptors: Statistical Analysis, Evaluation Research, Error Patterns, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Forero, Carlos G.; Maydeu-Olivares, Alberto – Psychological Methods, 2009
The performance of parameter estimates and standard errors in estimating F. Samejima's graded response model was examined across 324 conditions. Full information maximum likelihood (FIML) was compared with a 3-stage estimator for categorical item factor analysis (CIFA) when the unweighted least squares method was used in CIFA's third stage. CIFA…
Descriptors: Factor Analysis, Least Squares Statistics, Computation, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, Jason; MacKinnon, David P. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional "z" test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a…
Descriptors: Intervals, Testing, Predictor Variables, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Klugkist, Irene; Laudy, Olav; Hoijtink, Herbert – Psychological Methods, 2005
Researchers often have one or more theories or expectations with respect to the outcome of their empirical research. When researchers talk about the expected relations between variables if a certain theory is correct, their statements are often in terms of one or more parameters expected to be larger or smaller than one or more other parameters.…
Descriptors: Researchers, Bayesian Statistics, Mathematical Concepts, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Curran, Patrick J.; Bauer, Daniel J.; Willoughby, Michael T. – Psychological Methods, 2004
A key strength of latent curve analysis (LCA) is the ability to model individual variability in rates of change as a function of 1 or more explanatory variables. The measurement of time plays a critical role because the explanatory variables multiplicatively interact with time in the prediction of the repeated measures. However, this interaction…
Descriptors: Multiple Regression Analysis, Predictive Measurement, Models, Item Response Theory